
University of Massachusetts Dartmouth

Department of Electrical and Computer Engineering

Processor-in-Memory Computer Architectures

A Thesis in

Computer Engineering

by

Richard Muri

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

January 2019

We approve the thesis of Richard Muri

Date of Signature

Paul Fortier
Professor, Department of Electrical and Computer Engineering
Thesis Advisor

David Rancour
Associate Professor, Department of Electrical and Computer Engineering
Thesis Committee

Gaurav Khanna
Professor, Department of Physics
Thesis Committee

Liudong Xing
Graduate Program Director, Department of Electrical and Computer Engineering

Antonio H. Costa
Chairperson, Department of Electrical and Computer Engineering

Jean VanderGheynst
Dean, College of Engineering

Tesfay Meressi
Associate Provost for Graduate Studies

Abstract

Processor-in-Memory Computer Architectures

by Richard Muri

A processor-in-memory (PIM) computer architecture is any design that performs some subset

of logical operations in the same location as memory. The traditional model of computing

involves a processor loading data from memory to perform operations, with a bus connecting

the processor and memory. While this technique works well in many situations, a growing

gap between memory performance and processor performance has led some researchers to

develop alternative architectures.

This thesis includes a discussion of what is a PIM architecture, as well as motivations,

applications, and limitations of PIM. After providing background information on the subject,

a Field Programmable Gate Array (FPGA) implementation of a PIM enhanced microcon-

troller is presented. Using an Artix-7 FPGA, an ATmega103 microcontroller soft core is

modified to include a PIM core as an accelerator. The sample application of AES encryption

provides a comparison between the baseline processor and the PIM enhanced machine.

iii

Acknowledgements

Completing a graduate degree requires not only dedication from an individual, but support

from a wide group of people. I would first like to thank my adviser, Professor Paul Fortier,

for his expertise and patience. Thank you also to Professor David Rancour and Professor

Gaurav Khanna for serving on my thesis committee. Dr. Benjamin Viall and Patrick DaSilva

both contributed significant technical advice which accelerated my research. The graduate

students of the Electrical and Computer Engineering department provided both camaraderie

and commiseration, and I am grateful for the lasting friendships formed while working on

this thesis. The faculty and staff of Electrical and Computer Engineering department have

helped guide me through college and turn me into an engineer. In particular I would like to

thank Ms. Fernanda Botelho, without whom the whole department could not run. The final

people I must thank are my parents, James and Nancy Muri. My parents have nurtured and

encouraged me from day one. They have fed me, housed me, loved me, and listened to me

complain about how much I hate writing for my entire life. It is impossible to know how

much my parents have done for me, but I hope they know I appreciate it.

iv

Contents

List of Figures viii

List of Tables x

Acronyms xi

Chapter 1 Introduction 1

1.1 Problem Statement . 1

1.2 Approach . 2

Chapter 2 Background Information 6

2.1 Applications . 7

2.2 Motivations . 9

2.2.1 Performance Improvements . 9

2.2.2 Energy Efficiency . 10

2.2.3 Limitations of Traditional Architectures 11

2.3 Limitations . 12

2.4 Why Now? . 14

Chapter 3 Survey of PIM Literature 16

3.1 DRAM . 16

3.1.1 Computational RAM . 17

3.1.2 IRAM . 20

3.1.3 Bulk Bitwise Operations in DRAM 23

3.2 SRAM . 26

v

3.2.1 DRC2 . 28

3.2.2 Terasys . 31

3.2.3 Intelligent SRAM . 32

3.2.4 Recryptor . 35

3.3 Resistive Memories . 39

3.3.1 PRIME . 41

3.3.2 Spin-Transfer Torque Magnetic RAM 43

3.3.3 Computation-in-Memory Parallel Adder 47

3.4 Three Dimensional Integration . 49

3.4.1 Tesseract . 50

3.4.2 HAMLeT . 52

Chapter 4 FPGA-based PIM Simulation 55

4.1 Hardware Architecture . 55

4.1.1 ATmega103(L) Microcontroller . 56

4.1.2 PIM Modifications . 57

4.2 Processor in Memory Instructions . 60

4.2.1 Instruction Format . 60

4.2.2 Instruction Pipeline . 62

4.2.3 Typical PIM Operation Usage . 63

4.3 Example Application . 64

4.4 Results . 67

4.4.1 Software Comparison . 67

4.4.2 Hardware Comparison . 73

Chapter 5 Conclusions and Future Work 75

vi

5.1 Implementation Limitations . 75

5.2 Future Work . 77

Appendix A C Source Code 78

A.1 AES.c . 78

A.2 PIM_AES.c . 84

A.3 AES.h . 108

A.4 softcore_util.c . 109

A.5 softcore_util.h . 114

References 116

vii

List of Figures

Figure 1.1: DRAM performance improvement versus processor performance 3

Figure 1.2: The von Neumann architecture . 4

Figure 3.1: DRAM Array . 17

Figure 3.2: CRAM bit processor . 19

Figure 3.3: VIRAM1 floorplan . 21

Figure 3.4: VIRAM1 vector lane . 22

Figure 3.5: Standard six transistor SRAM cell . 27

Figure 3.6: Example SRAM array . 28

Figure 3.7: Ten transistor static random access memory (SRAM) cell with separate

read and write ports . 29

Figure 3.8: Additional column hardware enabling logic operations 30

Figure 3.9: ISRAM hardware architecture . 33

Figure 3.10: ISRAM performance summary . 34

Figure 3.11: Ten transistor SRAM cell used in Recryptor 36

Figure 3.12: Relative performance comparison of Recryptor 38

Figure 3.13: ReRAM cell . 40

Figure 3.14: ReRAM crossbar . 40

Figure 3.15: STT-MRAM cell . 44

Figure 3.16: Tesseract architecture . 51

Figure 3.17: HAMLeT architecture . 53

Figure 4.1: ATmega103 architecture and PIM modifications 58

Figure 4.2: ATmega103 data memory with PIM modifications 59

Figure 4.3: Format of a PIM instruction . 61

viii

Figure 4.4: Example pipeline of a PIM instruction 63

Figure 4.5: Example usage . 64

Figure 4.6: AES round steps illustrated . 66

Figure 4.7: Function to xor two 16 byte arrays . 69

Figure 4.8: Generated assembly for function in Figure 4.7 70

Figure 4.9: PIM implementation of function in Figure 4.7 71

Figure 4.10: Logical values in the mix_sub_columns function are dependent on run

time addresses, preventing the use of PIM operations 72

Figure 4.11: FPGA resource utilization . 74

ix

List of Tables

Table 3.1: VIRAM1 performance relative to other embedded microcontrollers

(higher is better) . 23

Table 3.2: Truth table for in-DRAM bitwise operations 24

Table 3.3: Throughput comparison of bitwise AND operations 26

Table 4.1: Artix-7 FPGA Specifications . 56

Table 4.2: Opcode List . 62

Table 4.3: Performance comparison of AES encryption on base ATmega103 and

PIM enhanced ATmega103 . 68

x

List of Acronyms

AES Advanced Encryption Standard

ADC analog-to-digial converter

ASIC application specific integrated circuit

ALU arithmetic logic unit

BL bit line

CIM Computing-in-Memory

CMOS Complementary Metal Oxide Semiconductor

CPU central processing unit

CRAM Computational RAM

CSB crypto-SRAM bank

dbC data-parallel bit C

DMA direct memory access

DAC digital-to-analog converter

DRAM dynamic random access memory

DRC2 Dynamically Reconfigurable Computing Circuit

ECC Elliptic curve cryptography

EEMBC Embedded Microprocessor Benchmark Consortium

FPGA field programmable gate array

GPR general purpose register

xi

GPU graphical processing unit

GPIO general purpose input/output

HAMLeT Hardware Accelerated Memory Layout Transform

HRS high resistance state

HMC Hybrid Memory Cube

IRAM Intelligent RAM

ISRAM Intelligent SRAM

ISA instruction set architecture

LRS low resistance state

MTJ magnetic tunnel junction

NN neural network

PIM processor-in-memory

RAM random access memory

RBL read bit line

RBLB read bit line bar

RBLF Read Bit Line False

RBLT Read Bit Line True

RISC Reduced Instruction Set Computer

RWLF Read Word Line False

RWLT Read Word Line True

ReRAM Redox Random Access Memory

xii

RTL register transfer level

SIMD single instruction, multiple data

SL source line

STT-CIM spin-transfer torque compute-in-memory

STT-MRAM spin-transfer torque magnetic RAM

SRAM static random access memory

S-box substitution box

TSV through silicon via

VIRAM1 vector IRAM

VLSI Very Large Scale Integration

VHDL Very High Speed Integrated Circuit Hardware Description Language

WL word line

WBLF Write Bit Line False

WBLT Write Bit Line True

WWL Write Word Line

xiii

Chapter 1 Introduction

1.1 Problem Statement

The limiting factor for computer performance is often the ability to transfer data between

memory and the processor. From 1980 to 2000, microprocessor performance improved by

approximately 60% per year, while dynamic random access memory (DRAM) access time

improved by less than 10% per year [1, 2] (Figure 1.1). Due to the processor and memory

performance gap, developing strategies to ensure a processor has work to perform during

memory latency has been a major area of research in computer engineering [3].

The divergence between processor and memory performance creates further issues as

hardware scales in performance. Memory bandwidth problems become more apparent as

processor throughput increases. As more instructions are completed, more data is needed to

match the processor execution rate. If the memory bandwidth is unable to keep up, latency

increases as the response to processor request slows [1]. Equation 1.1 describes the average

memory access time of a system,

tavg = p ∗ tc + (1− p) ∗ tm (1.1)

where p is the probability of a cache hit, tc is the time to access the cache, and tm is the

time to access main memory.

Assuming that processor requests are matched by the cache memory, it is apparent that

as tc and tm diverge, main memory access time will have a greater effect on both tavg and

system performance. Depending on the frequency of memory references and the cache hit

rate, tavg becomes the bottleneck. Even with conservative assumptions like a cache hit rate

1

2

of 99% and an average of one memory reference per five instructions, tavg quickly becomes

the limiting factor [4].

DDR4 random access memory (RAM), made commercially available in 2014, has an

access latency of approximately 45 nanoseconds [5]. The Intel i7-6700 processor, commer-

cially available in 2015, has a reported 4640 million instructions per second performance on

the single-threaded LZMA compression benchmark [6]. Assuming one in five instructions

are memory accesses, the cache hit rate is 99%, and cache hits add negligible additional

time to instruction throughput, running LZMA compression for one second results in 0.4176

seconds of time added by memory access latency, and 0.5824 seconds of cache hits or non

memory access instructions. More than 40% of the run time in this scenario is devoted to

memory access. If the memory latency trend depicted in Figure 1.1 continues, performance

improvements to processors will not significantly improve system performance.

1.2 Approach

The memory bus as a limiting factor in computer efficiency is commonly referred to as

the von Neumann bottleneck, after the ubiquitous computer architecture of the same name

(Figure 1.2). In a 1977 lecture, John Backus of IBM states “Not only is this [memory bus] a

literal bottleneck for the data traffic of a problem, but, more importantly, it is an intellectual

bottleneck...” [7], implying the von Neumann architecture has inherent shortcomings.

The von Neumann bottleneck exists as a result of the difference between the rate proces-

sors can handle data versus the rate data can be transferred from memory. Processors are

much faster, leading to wait cycles where the processor must delay execution while data is

transferred. Modified architectures, such as the Harvard architecture, and memory hierarchy,

such as associative caches, improve the overall throughput of a processor, but the bottleneck

of memory transfer is fundamentally unchanged [8].

Many techniques have been developed to improve the efficiency of modern computers.

3

Figure 1.1: DRAM performance improvement versus processor performance [2]

4

Figure 1.2: The von Neumann architecture

5

Architectural features such as pipelining, memory caching, and branch prediction improve the

throughput of a processor by working around the bottleneck [8,9]. Alternative programming

paradigms such as functional programming or self-modifying code have been proposed to

avoid passing as many instructions over the data bus [7]. Parallel computing and multiple

core systems increase the number of processors executing code in order to accomplish more

instructions in the same amount of time. Recently reconfigurable hardware has emerged as

a means to produce application specific hardware not requiring a traditional data bus [9].

All of these approaches improve computing efficiency, potentially with trade-offs, and may

be employed in some combination given the design requirements.

This thesis will evaluate the use of a processor-in-memory (PIM) architecture to improve

computer efficiency. PIM is another technique used to mitigate the von Neumann bottleneck

by reducing instruction data that must travel over the memory bus. PIM represents a change

to the fundamental computer architecture used for years. Where the data is stored, hardware

exists to perform logical and arithmetic operations on the stored data. Computations in

memory potentially reduces the number of required instructions in terms of load and store

operations. Additionally, if a general purpose processor is used in conjunction with PIM, the

main processor is free to perform other operations while the PIM unit provides in memory

computations.

The rest of this thesis is organized as follows: Chapter 2 defines PIM and discusses

motivations, applications, and limitations of PIM, Chapter 3 includes a survey of literature

on PIM and classifies it into four main categories based on the memory type used, Chapter

4 details this thesis’ contributions simulating PIM on an field programmable gate array

(FPGA), and Chapter 5 includes conclusions and future work.

Chapter 2 Background Information

The logical solution to the von Neumann bottleneck is to significantly improve memory

transfer bandwidth. Bandwidth inside a memory chip is several orders of magnitude higher

than on a bus between memory and a processor [10]. Memory-focused architectures that

perform logical operations in the same location where memory is stored exploit on-chip

memory bandwidth for performance improvements.

PIM architectures seek to mitigate the von Neumann bottleneck by placing logical op-

erations and memory in the same physical location [11]. Many different names have been

applied to the basic strategy of combining logic and memory, including smart/intelligent

memory, Intelligent RAM (IRAM) [12], merged DRAM/Logic, and Computing-in-Memory

(CIM) [11]. This thesis will use PIM as the preferred terminology for any architecture

involving interleaved logic and memory circuitry, or any strategy involving using memory to

perform logical operations. Some PIM strategies discussed include using different types of

modified RAM, interleaving logic circuitry with memory circuitry, and exploiting properties

of traditional RAM to perform logical operations. Relatively new strategies have been

proposed using memristor based RAM [13], 3D integration of logic and memory [14, 15],

reconfigurable hardware [16,17], and RAM powered by spin transfer torque [18]. Chapter 3

contains a detailed description of various PIM implementations and proposals.

There are two broad approaches to creating a closer coupling of memory and logic: in-

memory computing and near memory computing [18]. Both of these approaches fall under

the classification of PIM, although this thesis focuses mainly on in-memory computing and

near-memory techniques performing fine-grained operations on the memory. For instance,

Recryptor [19], a PIM implementation of a cryptography accelerator, includes both classifi-

cations. The RAM is modified to allow bitwise operations (in-memory computing), and some

6

7

peripherals are added nearby, such as a shifter, rotator, and S-box (near memory computing).

3D integration using stacked memory and logic chips fits the description of near memory

computing, but is still discussed in this thesis because of the similarities in outcomes with

in-memory computing, namely the ability to perform logical operations on arbitrary words

in memory while minimizing bus traffic.

While there are many strategies that could be classified as PIM, most implementations

share an approach that revolves around selecting multiple words in memory simultaneously.

In a typical processor, words are selected and loaded from data memory one at a time to a

register file. The values are operated on from the register file, and eventually stored back

to data memory. In PIM, multiple words are selected and operated on directly in memory,

with the results being stored in place. Depending on the PIM implementation, logic may

rely on electrical properties of the memory itself, additional logic gates attached to the sense

amplifiers, or functional units contained by the same die as the memory. Specific PIM

implementations are discussed in more detail in Chapter 3.

2.1 Applications

The primary reason to introduce a new style of computer architecture is to facilitate prob-

lem solving. Without an application in mind, an architecture is useless. In their 2018

lecture, Turing award winners John Hennessy and David Patterson predict “new advances

could create compilers and domain-specific architectures that deliver tenfold or more jumps

[in performance]” [20]. Hennessy and Patterson note that while single core performance

improvements have slowed down in recent years, as opposed to the historical trend where

processors improved by 60% a year, significant progress may still be made in domain specific

areas. PIM architectures are one such style of architecture, well-suited to a specific domain,

instead of serving as an overall improvement to general computing.

PIM architectures are best applied to “memory wall” problems [4], or applications that

8

perform poorly on modern architectures due to the von Neumann bottleneck. In particular

applications that are scalable to parallel processors [21], or that require repeated memory

accesses with relatively simple logic operation, are well suited to a PIM approach. The

reason for this is because of two common limiting factors improved by a PIM architecture,

limited general purpose registers (GPRs) [2] and imperfect caches. Programs that load more

data than could fit in the register file can be improved by performing operations directly in

memory rather than loading and storing data as needed using the limited number of available

GPRs. Programs that cannot utilize a cached memory hierarchy to hide access latency, such

as sparse matrix operations with irregular data access patterns [21], also greatly benefit from

performing operations in memory.

A common theme among many example applications for PIM architectures is the size

of the data set involved. Hamdiou et al. [22] discuss a DNA analysis problem, involving

comparing 200 GB of DNA against a 3 GB reference. The analysis is computational simplistic

and well suited to parallelization, but across a huge data set. The authors estimate orders

of magnitude better performance using a PIM architecture than a traditional von Neumman

machine.

PIM can also be applied to smaller scale problems that are punished by a small number

of GPRs, as opposed to frequent cache misses. One such application is accelerating crypto-

graphical functions, such as block ciphers or hashing algorithms [19]. On a microprocessor

with a small register file, a cipher algorithm might involve frequently loading segments of the

cipher block into the register file, performing the necessary logical operations, and storing

the result back to memory to free the register file for the next segment. PIM allows instead

the operations to be performed directly in memory, without worrying about the number of

GPRs available.

Sample applications for PIM architectures from the literature include graph processing

9

[14, 23], neural networks [24], cryptography [19], sparse matrix operations [15]. Li et al.

[23] note PIM greatly increases performance of bitwise vector operations, commonly used in

databases, graph processing, bio-informatics, and image processing.

2.2 Motivations

The ultimate purpose of using a PIM architecture is to mitigate the von Neumann bottleneck,

however, there are other motivating factors. The benefits of PIM can be divided into three

major categories of performance improvement, energy efficiency, and overcoming limitations

of traditional computer architectures.

2.2.1 Performance Improvements

Internal memory bandwidth is typically much larger than external memory bandwidth [10,

23]. PIM makes use of internal memory bandwidth, as operations are also internal to the

memory. Vector operations wide as the memory row offer massive parallelism. In situations

where multiple rows are operated on, using the full bit width of the memory, data is processed

with multiple orders of magnitude more bandwidth than the equivalent DDR3 RAM bus [23].

In problems that benefit from parallelization, such as graph processing, PIM enables memory

capacity proportional performance [14], whereas traditional architectures fail to scale with

capacity.

Not all applications benefit from massive parallelism. One of the major challenges of

realizing a single instruction, multiple data (SIMD) machine is that for less well structured

applications, performance degrades. PIM architectures have the benefit of also being mem-

ory. For applications solvable in parallel, PIM operations are available. In situations where

parallel operations are unnecessary, or not useful, PIM hardware still functions as traditional

memory. Instead of using die area for hardware that is not always useful, PIM provides a

parallel processing accelerator that functions as memory while not in use [25].

10

2.2.2 Energy Efficiency

The traditional memory hierarchy is a major power consumer in a microprocessor. By

changing the frequency of data transfers, or the memory model, PIM can lead to great

improvements in energy efficiency. Computation is the primary purpose of a system, but

consumes much less chip area and power than communication and memory access; cache

accesses and communication can take easily between 70% and 90% of energy consumption

in a microprocessor [22]. A memory-centric processor architecture is a natural next step

towards producing energy efficient systems. The current processor-centric approach relies on

a memory model that not only creates a performance bottleneck, but also significant power

consumption overhead.

The trend of memory access requiring more power than computation is apparent in

many systems. In some modern graphical processing units (GPUs), fetching operands is

more costly than operations [26]. Transferring data between the microprocessor and off-

chip memory is even worse, requiring up to two orders of magnitude more energy than a

floating point operation [23,24]. For applications requiring high memory bandwidth, such as

machine learning applications, memory access can grow to consume almost all of the energy

in a system. DRAM access is responsible for 95% of the power consumption in the DianNao

neural net accelerator [24].

PIM architectures solve these memory related energy efficiency problems by greatly

reducing or eliminating the need to transfer data between chips. When operations are

performed directly in memory, there is no need to use high capacitance buses to transfer

data to and from the processor [26, 27]. Additionally in PIM systems it may be possible

to streamline the memory interface, depending on the design. If in memory operations are

largely sufficient for the applications of a PIM system, wide parallel memory interfaces using

11

the majority of the pins on a microprocessor can be swapped for serial interfaces [27], as

data transfer is less necessary when the majority of operations are performed in place.

2.2.3 Limitations of Traditional Architectures

The gap in processor and memory performance creates a need for cached memory hierarchies

to overcome the memory access latency. A memory hierarchy places smaller, high-speed

caches physically close to the processor, often tiered into multiple levels. The first level is

the smallest, fastest, and closest to the processor, with subsequent cache levels having a

greater capacity at the expense of speed and distance from the processor. Cache accesses

are much faster than memory accesses, but require data to be copied from main memory.

Caching is far from a perfect solution, as caches represent significant die area and complexity

added to a processor. Sometimes more than 40% of the area in a processor die is taken up

by the cache [2, 12].

Caches consist of redundant data made necessary by the performance gap between

memory and processors. If memory could keep up with the processor, there would be no

need to include a cache hierarchy [2,27]. Maintaining a cache hierarchy contributes to system

complexity and energy consumption. Data modified in the cache must be modified in main

memory to match, and old data in the cache must be updated from the memory.

Main memory design further complicates issues related to the processor versus memory

performance gap. The focus of DRAM improvements have been on capacity and bandwidth,

at the cost of latency [5,28]. This increases the penalty of a cache miss, and severely degrades

the performance of applications where cacheing is less effective. Techniques to mitigate the

cost of such latency, including out of order execution and speculation, introduce non-trivial

complexity and area overhead, and do not scale well. Two MIPS processors, the R5000

and R10000, are good examples. The R5000 is a simple RISC machine, while the R10000

12

includes out of order execution and speculation. The R10000 performed 1.64 times better

on the SPECint95 test bench, but requires 3.43 times more chip area [27].

Systems utilizing multiple processor cores on a die exacerbate the bottleneck even more.

Sharing a die means each processor is limited in cache size; a smaller cache requires more

memory accesses, and places a greater demand on the main memory [27]. One method

of improving modern data intensive applications is to perform operations in parallel using

multiple processor cores. Adding additional cores allows more parallel operations, but also

increases memory access requirements as the cache size must go down to fit more cores on

the same die. In order to scale, PIM architectures do not need to make the same trade offs

between cache size and functional units as a traditional system.

In the modern age, a series of applications sometimes referred to as big data problems

are prevalent. Big data problems are especially data intensive, and include applications such

as large scale scientific computing, business analytics, machine learning, or bio-informatics.

The data size of these problems has grown at a greater rate than hardware improvements

have scaled processor performance. For applications where the primary goal is to process

vast amounts of data for hidden trends, the volume of storage and processing acts as a barrier

for traditional architectures. Memory size and access negatively impact both performance

and energy consumption, requiring new architectures designed with big data in mind [22].

Supercomputers designed to handle data intensive problems are expensive, power hungry,

and area inefficient [29]. PIM is an alternative providing parallelism inside the memory,

mitigating problems caused by a bus bottleneck and complex cache hierarchies.

2.3 Limitations

The primary challenge developing a PIM architecture is to realize a useful logic system

without significantly reducing the function of standard memory. One of the limiting factors

in building such architectures is the required number of transistors for logic circuits, making it

13

impractical to incorporate into a memory device, although this has become less of a problem

as transistor density has improved [1]. Incorporating logic into memory requires a trade-

off potentially with either memory density, or efficiency [18]. As a result, PIM is typically

limited to simple operations, such as bitwise logic. Some implementations do include simple

arithmetic operations such as addition [18,19,26,29], but not all operations can be performed

in memory efficiently. Most PIM implementations must function as an accelerator or co-

processor to a more general computer, or as an application specific architecture.

A major limiting factor in developing PIM is the manufacturing process. The semi-

conductor industry is split: microprocessors and memory are designed by different parties

[28,30]. Early PIM efforts failed because design/manufacture of performance optimized logic

with density optimized memory is not cost effective. Logic designs take extra metal layers,

and are not desirable for memory manufacturers [23]. PIM designers are either limited to

existing memory technologies, or are faced with costly custom solutions. The process of

memory manufacture is highly optimized to produce economical, dense memory chips, and

requires compromise either in price or in memory performance to produce a mixed logic and

memory design.

Introducing a new source of complexity into memory design, logic, complicates the design

requirements and test requirements. Thermal efficiency is especially important in PIM

architectures. Data retention rates are affected negatively as die temperature increases

[12, 27], and thermal requirements limit the complexity of logic in PIM [31]. High speed

switching logic also adds additional noise into the memory system [27]. Testing the whole

system becomes more difficult. Adding processor elements increases the time and cost of

testing to memory [12].

Finally, as with any new architecture, in order for widespread adoption, PIM must be

supported with software. PIM operations need to be used by compilers that are capable

14

of recognizing program parallelism, and are capable of generating instructions that make

effective use of the internal memory bandwidth [2]. For people to use PIM, it must run

a significant body of software, and it must be sufficiently easy to program. Widespread

adoption will occur when some critical value of cost-performance benefit, ease of use, and

availability of useful programs becomes available [27].

2.4 Why Now?

PIM is not a new concept, with significant research being performed on the subject in the

1990s [23]. PIM has seen a recent resurgence in the literature for three main reasons: modern

improvements to hardware technologies, greater demand for data intensive applications, and

economic incentives.

New memory technologies and improvements to existing technologies improve the viabil-

ity of PIM. One of the greatest barriers of entry for PIM was the challenge of fitting memory

and logic into the same die. In modern times, smaller feature sizes and greater transistor

density make it easier to fit useful logic and sufficiently dense memory into the same die [1].

Additionally new memory materials and manufacturing techniques show promise for use in

PIM applications. Resistive memories based around memristors arranged in crossbars enable

in memory operations. Three dimensional integration using through silicon vias (TSVs)

allows logic and memory dies to be stacked on top of each other, effectively combining into

a singular chip.

The emergence of big data applications incentivized research for accelerators. PIM offers

the potential for memory capacity proportional performance, making it an attractive option

for big data applications.

The final reason PIM is being worked on again now is Moore’s Law has finally slowed

down. Massive improvements to system performance that drove economic growth over the

past 20 year was largely driven by hardware improvements, such as denser transistors and

15

higher clock rates [20]. This trend has disappeared, leaving space in the field of computer

architecture to search for alternative improvements. PIM was never widely adopted in part

because of memory density problems which are now less of an issue, and because of the cost

involved with developing custom memory. Now that there are other incentives to develop

PIM, the costs associated are more acceptable.

Chapter 3 Survey of PIM Literature

This chapter contains a survey of literature summarizing published PIM proposals, strategies,

and implementations. The chapter is divided into four sections based on the memory

technology described: Section 3.1 DRAM, Section 3.2 SRAM, Section 3.3 resistive memories,

and Section 3.4 three dimensional integration.

3.1 DRAM

DRAM is ubiquitous in modern computer systems, serving as the foundational technology of

main memory for decades [5]. DRAM is desirable for its density and cost. The manufacturing

process has been optimized to produce high-capacity, inexpensive memory. The trade-off is

that DRAM has higher latency than other memory technology, such as SRAM [30]. Latency

is one of the primary motivations for PIM, in an effort to avoid the bottleneck it creates.

A basic understanding of the architecture of DRAM is necessary to understand how PIM is

applied to improve it.

DRAM consists of a two dimensional array of cells, each of which store a singular

bit (Figure 3.1). A standard DRAM cell contains a capacitor connected to a transistor,

controlled via a word line and bit line. Word lines are connected to a row decoder that

corresponds to memory address, and bit lines are connected to sense amplifiers capable

of latching digital values. A cell is accessed by setting the word line high, connecting

the capacitor to the bit line. The bit line is pre-charged; when the word line goes high,

the capacitor shares charge with the bit line. A sense amplifier at the end of the bit line

determines if the capacitor was charged, representing a logic ’1’, or discharged, representing a

logic ’0’. Such a read is destructive, requiring a rewrite to preserve the bit value. Additionally,

the capacitor will leak charge over time, even when the access transistor is turned off.

16

17

Figure 3.1: DRAM Array [5]

Peripheral circuitry that periodically restores every charged capacitor is necessary to avoid

data loss [30].

DRAM is typically arranged into several hierarchical levels: a chip contains multiple

banks (often eight), each of containing rows of cells [5]. In order to avoid problems with

layout, long wires, and degraded performance due to large bit lines and word lines, banks

contain multiple subarrays. A typical size for a subarray is 256 words by 512 bits [30].

3.1.1 Computational RAM

Early PIM implementations sought to incorporate SIMD into memory. In 1992, Elliot

et al. [10] prototyped a PIM implementation using DRAM called Computational RAM

(CRAM). CRAM places processing elements directly into main memory in line with memory

columns. It exploits internal memory bandwidth available at the sense amplifiers to improve

performance. The authors note that CRAM could replace conventional memory to add

array processing capabilities to standard hardware, or be used as a standalone processor for

embedded video or signal processor.

18

CRAM uses 1-bit processors located at the bottom of memory columns (Figure 3.2).

There are three inputs, two registers and memory, to an arbitrary 8-bit truth table mi-

crocoded by an off chip controller. Inter-processor communication is done with shift registers

between adjacent processors.

19

Figure 3.2: CRAM bit processor [10]

A prototype CRAM was fabricated using 8 Kbits of SRAM as the memory. In the

20

prototype, processor elements make up 9% of the chip area. An extension of the design is

to use DRAM instead of SRAM for the implementation. CRAM is able to read, perform

two ALU operations, and write-back in 150 ns, meaning the speed of DRAM operation is

not impacted. A DRAM design has lower performance than SRAM, but is more desirable

due to better memory density. 32 Mbytes of CRAM is capable of performing 13 billion 32

bit additions per second. This result is unrealistic, as it is the theoretical maximum and

also reliant on data locale within the memory, but even utilizing a fraction of the theoretical

performance is impressive.

3.1.2 IRAM

University of California Berkeley’s IRAM project focused on identifying the design issues

involved with a merged processor and DRAM system [12,27,28,32,33]. The project resulted

in the vector IRAM (VIRAM1) processor, which the research group designed and fabricated

[34]. VIRAM1 combines PIM with vector instructions to exploit internal memory bandwidth

for massive parallelism. Vector instructions operate on linear arrays of numbers, whereas a

typical scalar processor operates on one piece of data at a time. VIRAM1 targeted embedded

media applications because media processing benefits from vectorization, and the PIM nature

of the architecture enabled a low power design.

A vector architecture was chosen for its parallelism and relative simplicity. VIRAM1 was

designed by a team of researchers and graduate students, while most commercial micropro-

cessors are designed by a large contingent of engineers over years time. Vectors inherently

guarantee mutual independence of data elements. There is no need to use complex structures

like speculation, prediction, or re-ordering to expose parallelism as vectors are explicitly

parallel. Avoiding these more complex architectural features saves power, and limits design

complexity. Operations are executed on parallel data paths, referred to as lanes. Performance

21

Figure 3.3: VIRAM1 floorplan [34]

in terms of both energy efficiency and processing throughput is improved by operating on

full vectors. Each vector is fetched and decoded as a unit, and operated on wholly.

Figure 3.3 shows an overview of VIRAM1. The design consists of four key components:

a scalar core, a vector control unit, four vector lanes, and eight embedded DRAM modules.

The scalar core is a MIPS M5Kc 64-bit microprocessor with 8 KBytes of instruction and

data caches. Interfaced with the core are a vector control unit and a floating point unit. The

DRAM modules are each 13 MBits with an eight byte interface connecting to vector lanes.

Figure 3.4 shows a single vector lane. Each lane contains one quarter of an eight Kbyte

register file, a floating point arithmetic unit, a fixed point arithmetic unit, and a flag unit.

Single-precision floating point and integer multiplication are supported, as well as fixed-

point multiply-add instructions targeted at media applications. Fixed-point operations can

be partitioned into one 64-bit operation, two 32-bit operations, or four 16-bit operations. The

22

flag unit contains flag registers holding masks for vector instructions, enabling conditional

execution on individual vector elements.

Figure 3.4: VIRAM1 vector lane [34]

VIRAM1 was evaluated using the Embedded Microprocessor Benchmark Consortium

(EEMBC) suite for comparison. Table 3.1 contains the results for the VIRAM1 and sev-

eral contemporary embedded processors in the Telecom and Consumer application areas.

VIRAM1 significantly outperforms the listed processors. Not only is the performance higher,

but the VIRAM1 uses minimal power, and runs at a relatively low clock frequency.

IRAM is shown to be a promising area of computer architecture research. The VIRAM1

outperformed contemporary embedded processors, and it was designed and implemented by

a research lab. A commercial manufacturer with substantially more resources could produce

23

Table 3.1: VIRAM1 performance relative to other embedded microcontrollers
(higher is better)

Processor Clock Frequency Power ConsumerMark TeleMark
VIRAM1 200 MHz 2 W 201.4 61.7

Motorola MPC7455 1000 MHz 21.3 W 122.6 27.2
AMD K6-III+ 550 MHz 21.6 W 34.2 8.7

TI C6203 300 MHz 1.7 W n/a 44.6
NEC MIPS VR500 250 MHz 12.1 W 14.5 2.0
Trimedia TM1300 166 MHz 2.7 W 110.0 n/a

an even better design. VIRAM1 proves PIM is a viable commercial strategy, provided

economic and manufacturing limitations are overcome [12].

3.1.3 Bulk Bitwise Operations in DRAM

A common strategy in PIM is to modify sense amplifiers or add logic near the amplifiers

to enable bitwise operations between words. Seshadri et al. [35] describe a method to use

DRAM to perform bitwise AND and OR operations, with only minor modifications. In a

traditional system, a bitwise operation requires loading multiple words from main memory,

processing them, and writing the result back into memory. This procedure is undesirable

and inefficient, particularly for larger applications with lots of data, such as databases.

The proposal allows bitwise operations to be performed in bulk by exploiting the fact

that a sense amplifier is connected to many DRAM cells. Three rows of DRAM are activated

simultaneously, causing a multiple kilobyte wide bitwise AND or OR operation on two of

the rows; the third row is used to select between bitwise operations.

The principal behind in-DRAM bitwise operations is based on charge sharing during

memory access. The logical value of a cell is determined by the voltage of a bit line after

charge sharing. If the voltage at the sense amplifier is greater than 1
2
VDD (where VDD is the

operating voltage of the DRAM), a logic ’1’ is recorded, and a logic ’0’ is recorded if the

24

Table 3.2: Truth table for in-DRAM bitwise operations

R A B Result

0

0 0 0
0 1 0
1 0 0
1 1 1

1

0 0 0
0 1 1
1 0 1
1 1 1

voltage is less than 1
2
VDD. The voltage level of the bit line when three cells are active is

greater than 2
3
VDD if at least two cells are charged, resulting in a logic ’1’. If no more than

one cell is active, the bit line voltage is no greater than 1
3
VDD, resulting in a logic ’0’. A

truth table for the method is shown in Table 3.2, where R refers to the control row, and A

and B are the operand rows. If R is ’0’, then the result is A AND B; else if R is ’1’, the

result is A OR B.

A glaring issue with the design is that the bitwise operations are destructive. To overcome

this problem, first two source rows are copied into two temporary rows, then a third tempo-

rary control row is initialized to ’0’ or ’1’ depending on the operation. Finally the results are

written back to a sixth destination row. Copying this much data would ordinarily add more

overhead than the bulk operation is worth, but the authors propose another method called

RowClone [36] for efficiently copying rows within the same subarray or bank. The details of

RowClone are beyond the scope of this summary. Two rows initialized to all ’0’ or all ’1’ are

reserved to copy into the control row; additionally, the three temporary rows are reserved in

each subarray.

Modifications to DRAM required to implement bulk bitwise operations include the ad-

25

dition of a small decoder in each subarray to control the reserved rows, additional control

signals in the memory controller to interface with the decoders, support for RowClone [36].

The estimate for a subarray with 1024 rows is no more than 0.5% less memory capacity.

The estimated results of bulk bitwise operations are promising. Two estimates are

provided, an “aggressive” estimate where the overall latency of a bitwise operation is assumed

to be 200 ns, and a “conservative” estimate where latency is assumed to be 340 ns (the

aggressive method uses the additional decoder to speed up copying rows). An Intel i7-4790k

processor with two 8 GB DDR3-1333 DIMMs on separate channels was used as a baseline

for a comparison of bitwise AND operation throughput, measured in GB/s. The benchmark

involved performing AND operations on two vectors of sizes ranging from 8 KB to 32 MB.

The baseline processor performance significantly drops off as vectors grow to the point that

they no longer fit in caches. Table 3.3 includes a summary of bitwise operation throughput.

The rows labeled with a cache name describe the baseline performance when the working

set fits entirely within the cache.

The greatest benefit of in-memory bitwise operations is the scalability. The throughput

does not change with the size of the vector processed. Additionally bulk bitwise operations

scale linearly with the inclusion of additional specially modified banks, whereas additional

processor cores will not improve the baseline as the bottleneck is memory access. Providing

additional processors does not change the speed of the DRAM bus, but modifying more

DRAM banks allows bitwise operations in multiple banks simultaneously.

Energy consumption was estimated based solely on the cost of DRAM accesses. The

conservative estimate had a 31.6X improvement over the baseline, and the aggressive estimate

had a 50.5X improvement.

26

Table 3.3: Throughput comparison of bitwise AND operations

Device Throughput (GB/s)
Aggressive, 2 banks 76.4

L1 cache 71
Aggressive 38.2
L2 cache 25

Conservative 22.4
L3 cache 15
Baseline 3.9

The authors also provide a more realistic benchmark. The FastBit bitmap index library

is used in physics simulations and network analysis. Performance on a standard data set

where the baseline spent an average of 31% of time on bitwise operations resulted in a 30%

improvement using four aggressive estimate banks. A single bank with the conservative

estimate still had an 18% performance improvement.

3.2 SRAM

Static random access memory (SRAM) is a volatile memory array that does not require

refreshing. SRAM is commonly used in applications such as caches or register files. SRAM

is faster than DRAM, and requires less peripheral circuitry, but is less dense and more

expensive [30].

Figure 3.5 shows a standard six transistor SRAM cell. It consists of cross coupled

inverters, each with an access transistor. Three signal wires control each SRAM cell: a

word line, a bit line, and a bit bar line. The bit bar line is associated with the inverted

section of the memory cell. The word line is connected to the gate terminal of both access

transistors, and is used to select a word for operations. The bit line and bit bar line connect

to sense amplifiers for reads and write drivers for writes.

27

Figure 3.5: Standard six transistor SRAM cell [30]

Both bit lines are pre-charged high to perform a read operation. The bit line connected

to the side of the cell storing a logic 1 will remain charged, while the other bit line will form

a path towards ground through the access transistor and discharge.

SRAM cells are arranged in a two dimensional array (Figure 3.6). Word lines are selected

by row decoder, and bit lines are selected by column decoder. Each column contains sense

amplifier used to read the bit lines. Similar to DRAM (Section 3.1), SRAM is often divided

into a hierarchy [30].

28

Figure 3.6: Example SRAM array [30]

3.2.1 DRC2

Akyel et al. [26] propose a PIM-implementation based on SRAM using a ten transistor cell

called Dynamically Reconfigurable Computing Circuit (DRC2) [26]. The goal is to reduce

power consumption caused by data transfer between memory and processor. In order to

accomplish this, DRC2 uses a highly parallel pipelined architecture. The provided example

application is merging image buffers used in robotics to detect obstacles and estimate their

velocities. DRC2 is estimated to perform the image processing in as few as half as many

clock cycles. An alternative implementation using a standard six transistor SRAM cell is

29

Figure 3.7: Ten transistor SRAM cell with separate read and write ports [26]

estimated to have a 1.5X performance improvement, but has less area overhead than a ten

transistor cell. The authors also predict significant energy savings, but are unable to provide

a quantitative value.

The SRAM cell (Figure 3.7) in DRC2 uses two extra pairs of transistors to provide

separate read and write ports. There are three word lines and two pairs of bit lines. Write

Word Line (WWL) in conjunction with Write Bit Line True (WBLT) and Write Bit Line

False (WBLF) allow independent writes; Read Word Line True (RWLT) works with Read

Bit Line True (RBLT) and Read Word Line False (RWLF) works with Read Bit Line False

(RBLF) in the same manner to allow independent reads.

DRC2 follows the approach of selecting multiple word lines to perform computations

in SRAM along a column. The architecture supports operations a basic ALU provides,

30

Figure 3.8: Additional column hardware enabling logic operations [26]

including bitwise operations like XOR, NOR, NAND, OR, and AND, but it also includes

more complex instructions such as addition, subtraction, and shifting.

Bitwise operations including AND, OR, NAND, and NOR are performed using a similar

technique as described in Section 3.1.3. Multiple word lines are selected in a column, and

the final result on the bit line is equal to a logical operation between the selected words.

For example, cells A and B in contain the logical values 1 and 0 respectively. If RBLT is

charged, and RWLT is active for both cells, RBLT has a path to ground and goes to a logic

’0’. Repeating the exercise for all values of A and B it become apparent that this operation

is a logical AND of A and B. SRAM has an inverse bit line in addition to the normal bit

line, allowing potentially two separate simultaneous bitwise operations from each column of

cells. Additionally, the operations scale with multiple operands. N word lines in a column

can be selected to perform a bitwise operation on N bits.

Other operations require additional hardware at the bottom of each column. XOR/NXOR,

comparison, material implication, less than, and greater than use a multiplexer and a handful

31

of logic gates as pictured in Figure 3.8. Addition and subtraction require a full adder inside

the SRAM, comprised of a multiplexer and three additional gates beyond the peripheral

circuitry. The carry out signal of each adder is connected to the carry in of the adder in the

next most significat column. For use in high frequency systems, the adder must be pipelined

into three clock cycles to allow time for the carries to propagate.

The architecture presented is promising, with notable issues. The concept of memory

configured to perform computation opens the door to exciting strategies such as exploiting

parallelism and greater bandwidths inherent inside memory. Applications using a large

amount of data implemented with parallel bit operations could benefit greatly from an

architecture such as DRC2. The caveat is that the authors do not provide an area overhead

or cost analysis. Adding a full adder to the bottom of every SRAM column could come with

significant overhead. DRC2 is an interesting concept that needs more research.

3.2.2 Terasys

In 1995, Gokhale et al. [25] created an alternative to a high-performance SIMD computer

using a PIM architecture. The motivation behind the design was to overcome the inherent

limitations of SIMD systems: performance degrades on applications not well suited to parallel

execution. Terasys aims to provide a platform with the advantages of SIMD for applications

that can benefit from parallelism, without degrading for other applications. A flexible host

processor allows general purpose computing, while SIMD processor arrays are designed

as PIM that can be used as additional memory for operations that do not require SIMD

instructions.

Terasys PIM chips are designed using a 4-bit memory with a single bit arithmetic

logic unit (ALU) at the controlling each memory column. Eight megabytes of address

space consisting of 32K single-bit ALUs were placed in a Sparcstation-2 workstation. The

workstation consists of a Sparc-2 processor with a bus connecting to an external enclosure

32

with an interface board, and up to PIM array units containing 4K single bit ALUs each.

PIM array units are made up of eight banks of eight chips each containing 64 ALUs.

Each PIM chip contains 2K by 64 bit SRAM, with a parallel prefix network and a logical

OR network to allow communication between ALUs. An ALU can load data from memory

or store it on each clock cycle, and produces three outputs for storage, recirculation, or

routing. The networked architecture of Terasys allows the use of microcode to support

complex operations. The SPARC processor is capable of sending two commands per 200

nanoseconds, each command consisting of 25 bits of microcode instruction. The interface

board holds a 4K lookup table that is filled with instructions generated for each program.

Terasys is strongly coupled to a parallel programming language devised with the archi-

tecture in mind called data-parallel bit C (dbC). Included is a microcode assembler that

will generate a lookup table for every program written. dbC includes special instructions for

memory allocation, interprocessor communication, and data movement to take advantage of

Terasys.

The performance of Terasys is compared to the Cray-YMP supercomputer. Programs

developed for Terasys ranged from 5 to 50 Cray-YMP single processor equivalent perfor-

mance. For example, Terasys was able to generate 2 ∗ 1010 pseudorandom bits per second

(20 Cray-YMP equivalents). The authors claim to "deliver supercomputer performance

for a small fraction of supercomputer cost". Additionally, each PIM bank can be used as

additional memory for the SPARC host processor to perform operations that do not benefit

from parallel execution.

3.2.3 Intelligent SRAM

Embedded Intelligent SRAM (ISRAM) is a near-memory enhancement of SRAM proposed

by Jain et al. [37] targeted at pipelined Reduced Instruction Set Computer (RISC) processors

used in embedded systems. ISRAM places an ALU and an accumulator near on-chip SRAM,

33

and provides several additional instructions to allow data movement between the processor

register file, accumulator, and SRAM. The design relies on the fact that words in the on-chip

SRAM are stored with multiple words to the same row; in order to read a single word, the

whole row is read, and then the desired word is selected. This allows the ISRAM ALU to

read two words in a single clock cycle with minimal additional hardware. Figure 3.9 contains

an overview of the ISRAM architecture.

Figure 3.9: ISRAM hardware architecture [37]

The hardware is designed to accelerate an ARM9TDMI processor, which has a five stage

pipeline. The pipeline is unmodified, save to include direct memory access (DMA) style

instructions to control the ISRAM ALU. Assuming an SRAM latency of one cycle, ISRAM

calculations do not need to stall the processor pipeline. In an unmodified system, a load

instruction followed by an operation on the loaded data could require a pipeline stall, because

34

the load instruction requires a cycle to produce valid data. ISRAM allows operands to be

loaded from memory and used in calculations during a single instruction with no stalling.

ISRAM requires operations to be partitioned between the host processor ALU and the

added hardware. The authors present algorithms for dividing instructions, and for mapping

data so the ISRAM ALU can make the best use of it. They estimate the additional hardware

requires about 3000 gates, and does not include multiplication. The results are shown in

Figure 3.10, using eight example applications, and differing assumptions about the length of

SRAM latency.

Figure 3.10: ISRAM performance summary [37]

ISRAM offers modest improvements to the chosen benchmarks. In particular it is well

suited to applications such as matrix and vector addition. The near-memory approach of a

building a complete ALU inside a memory bank is suited to embedded applications where

capacity is a major concern, however the architecture probably will not scale. For larger

applications, architectures that take better advantage of in-memory bandwidth by placing

hardware in memory columns include designs described in Sections 3.2.1 or 3.2.4.

35

3.2.4 Recryptor

Zhang et al. [19] implemented a PIM accelerator for cryptographic applications for Internet

of Things devices called Recryptor. Recryptor is a solution that replaces other accelerators,

such as application specific integrated circuits (ASICs), reconfigurable hardware, or a tra-

ditional co-processor. Cryptographic operations typically have a high bit width, and make

frequent use of bitwise operations, making them an ideal candidate for PIM architectures.

The authors propose a new architecture, dubbed "Recryptor", which is essentially a

co-processor using a memory-centric architecture. Instead of a traditional processor, with

registers, ALU, and program counter, it uses a specialized SRAM bit cell with interspersed

logic. Recryptor was tested with Elliptic curve cryptography (ECC), a form of public key

cryptography, Advanced Encryption Standard (AES), a form of secret key cryptography, and

the Keccak hash SHA-3 hashing algorithm with significant energy efficiency improvements

over standard approaches. Additionally, the authors claim to be the first to accelerate public

and secret key and hash functions at the same time.

Recryptor is designed using an ARM Cortex-M0 microcontroller with 32 kB of memory,

with one 8 kB memory bank replaced with a custom SRAM implementation referred to as

a crypto-SRAM bank (CSB). It uses a ten transistor bit cell to support dual read ports; by

accessing two words simultaneously, bitwise logical operations can be performed in one clock

cycle. These bitwise operations are referred to as in-memory computation, while a shifter,

rotator, and substitution box (S-box) placed physically near the CSB provide near memory

computation.

Figure 3.11 is a diagram of the ten transistor bit cell used in the CSB. For a read

operation, only the read bit line (RBL) is pre-charged; for a logical 1, the line will be

discharged, and for a logical 0 it will remain high. In order to perform bitwise logic, multiple

word lines are selected at the same time. A or B is performed by charging the read bit line,

36

Figure 3.11: Ten transistor SRAM cell used in Recryptor [19]

37

and if either is a logic 1, then the line will discharge, the equivalent of A NOR B. An inverter

at the bottom of the column turns this into A OR B. A AND B works in a similar fashion,

using instead the read read bit line bar (RBLB). A NOR gate between the two bit lines

allows A XOR B if both lines are charged high. All of these operations are performed in a

single cycle.

Another innovation to speed up cryptographic computations is how memory "sub"-banks

are configured. The CSB is arranged in 16 slices with 128 32 bit words. Sub banks can be

enabled to allow for up to 512 bit single cycle logic operations. This gives a clever programmer

the means to parallelize cryptographic algorithms with high bit width words.

The "near memory" devices allow single cycle operations important for cryptography

beyond bitwise operations. A shifter allows for various shift operations based on the sub

bank used; the design is accomplished with multiplexers and is area efficient, but wiring

intensive. A rotator allows arbitrary 64-bit rotation using two stages, a 0-7 stage and a

multiples of 8 stage. It uses a standard barrel shifter. An S-box is also included; an S-box

is a cryptography specific component used for byte substitution in block cyphers. These

near memory devices function like accelerators, providing functionality that would otherwise

require multiple clock cycles to perform with a general purpose central processing unit (CPU).

The authors describe programming cryptography algorithms on Recryptor. Modularity

of the design, allowing multiple algorithms of different general classes, is a focal point of the

design. The implementation details are less exciting. The results are more interesting. For

the ECC algorithm, Recryptor performs in 330 estimated operations what takes a standard

Cortex-M0 software implementation an order of magnitude more operations. Specific perfor-

mance improvement results are not listed for AES or Keccak functions, but implementations

are provided. Recryptor programming is done using what are essentially direct memory

access instructions to a memory-mapped decoder.

38

Figure 3.12: Relative performance comparison of Recryptor [19]

Testing was done using real chips fabricated with a 40-nm Complementary Metal Oxide

Semiconductor (CMOS) process. The CSB resulted in an increase in memory area from

55.000µm2 to 180.000µm2, or an area overhead of 36% beyond a standard ARM Cortex-M0.

Bit cells used were from the standard cell library. The authors speculate they could achieve

an 18% area overhead given a custom bit cell design.

Recryptor shows promise accelerating cryptographic applications for embedded devices.

Figure 3.12 shows relative results. Recryptor significantly improves performance over the

baseline while using less energy and area than a co-processor. ASICs outperform Recryptor,

as expected, but are not programmable, and are expensive to develop. The concept behind

computation in memory is exciting for applications beyond just cryptography. Recryptor is

particularly noteworthy because results are based on a fabricated chip, not just simulations.

39

The design could be applied as an alternative computer architecture to the standard Harvard

model being used for general purpose applications.

3.3 Resistive Memories

Resistive memories are an emerging nonvolatile memory technology relying on variable resis-

tance cells to represent logical values. Cells change resistance based on polarity, magnitude,

and duration of a current or voltage applied, typically between a high resistance and low

resistance to represent a binary value. A typical configuration includes a word line connected

to an access transistor, a bit line for sensing data, and source line to allow write operations

[23].

Redox Random Access Memory (ReRAM) cells are memristive devices using an oxida-

tion/reduction reaction as the switching mechanism. ReRAM is desirable for its scaling,

endurance, and retention properties [22] and is a strong candidate for PIM due to its

capacity, fast read speed, and computation capability [24]. A ReRAM cell consists of two

metal electrodes with an insulating oxide layer as the switching material (Figure 3.13). By

applying an external voltage, a cell may be switched between a high resistance state (HRS)

and a low resistance state (LRS). Changing a cell to HRS (a SET operation), representing

a logical ’1’, is requires a positive voltage high enough to generate a sufficient write current.

Switching a cell to LRS (RESET operation), representing a logical ’0’, is done by applying

a voltage of high enough magnitude negative voltage [24].

ReRAM used in PIM is frequently arranged in a crossbar structure [22,23,38]. A crossbar

contains two sets of parallel lines, with each set placed perpendicular to the other (Figure

3.14). The lines are conductive metal that act as electrodes for memristive material that

forms a junction. Each junction is a singular ReRAM cell accessed via the crossbar. Writes

are performed by applying the correct voltage bias across the junction, while reads involve

applying a relatively low voltage (low enough to avoid an accidental write) and differentiating

40

Figure 3.13: ReRAM cell [23]

Figure 3.14: ReRAM crossbar [23]

between LRS and HRS using Ohm’s law. If multiple cells are selected simultaneously, logical

operations can be performed by exploiting the electrical properties inherent to the crossbar,

similar to the techniques using multiple SRAM word lines described in Sections 3.2.1 or

3.2.4.

ReRAM has been considered as a replacement technology for DRAM because ReRAM

potentially requires less area and energy for the same performance [22]. ReRAM has a

comparable read latency, but significantly longer write latency. Recent improvements to

41

ReRAM architectures have bridged the gap to as small as a 10% write performance difference

between ReRAM and DRAM [24].

3.3.1 PRIME

PIM is a strong candidate for use as a neural network (NN) accelerator because neural

networks fit the criteria of requiring large amounts of memory access with relatively small

computational effort on each access. Chi et. al. [24] propose PRIME, a PIM architecture

used for neural network computation inside ReRAM. PRIME seeks to maintain large

memory capacity and memory bandwidth by moving computation into the memory chip.

Artificial neural networks are a class of machine learning algorithms consisting of a

network of neurons, with multiple layers, and weighted synapses. Traditional CMOS-based

NNs have substantial design challenges related to the area occupied by the thousands of

transistors making up neurons and synapses. ReRAM crossbars have been proposed as a

denser method of constructing synaptic arrays required for NN computations. A ReRAM

crossbar represents input data as analog input voltages on the word lines. Synaptic weights

are programmed into cell conductances of the crossbar. Current flowing through each bit

line is a matrix vector multiplication. A non-linear function is applied after sensing the bit

line.

Additional peripheral hardware is required to realize a ReRAM NN. Digital-to-analog

converters (DACs) and analog-to-digial converters (ADCs) are needed for analog computing,

a sigmoid performs the non-linear function, and a subtraction unit combines positive and

negative weights implemented as separate crossbars. PRIME is unique as a ReRAM NN

implementation because it allows ReRAM crossbar arrays to operate either for NN compu-

tation, or to be used as memory when other functions are not necessary.

PRIME partitions ReRAM banks into three regions: memory subarrays, full function

(FF) subarrays, and buffer subarrays. Memory subarrays are used for data storage only,

42

and are the same as conventional ReRAM subarrays. FF subarrays can be used for either

NN computation, or data storage. Buffer subarrays are caches for FF subarrays, located

physically nearby, and can also be used for storage when not in use as a buffer. An additional

controller is necessary to control FF and buffer subarrays.

To realize PRIME FF subarrays, the decoder and driver, column multiplexer, and sense

amplifier of a traditional ReRAM cell are modified. The decoder and drivers include addi-

tional hardware to allow switching between computation and memory mode, and to support

more levels of input voltage. The column multiplexers incorporate analog processing units in

the form of a subtraction unit, and a sigmoid unit. Sense amplifiers are configured to support

up to eight bits of precision, and include logic circuitry to perform NN computations. Buffer

subarrays include additional decoders and multiplexers to allow FF subarrays to access any

memory location, and include an intermediate storage register to allow conditional bypass

of buffer subarrays. Modified sense amplifiers and write drivers serve the same purpose as

ADCs and DACs would in other NN ReRAM designs, saving space by incorporating signal

conversion functionality into existing peripheral circuitry.

PRIME was evaluated using a test bench of several well known NNs of varying size (small,

medium, and large) and a suite of simulation softwares. The baseline is a four core, 3 GHz

processor with out-of-order execution, two levels of cacheing and 16 GB of ReRAM-based

main memory. Also included are a PIM solution using 3D integration, with 64 parallel neural

processing units, and a co-processor accelerator. Across NNs, the PIM solution achieves an

average speedup of 9.1X over the co-processor, and PRIME achieves a speedup of 4.1X

over the PIM solution (37.3X over the co-processor). In terms of energy efficiency, PRIME

is between two and five orders of magnitude better than the baseline, and two orders of

magnitude better than the PIM solution.

The area overhead of PRIME is minimal. In a bank of 64 subarrays, including two

43

FF subarrays and one buffer is a 5.76% overhead. Given the impressive performance and

minimal area overhead, PRIME could become an effective architecture for NN acceleration

if ReRAM becomes a viable memory technology.

3.3.2 Spin-Transfer Torque Magnetic RAM

One of the primary motivations for PIM is energy efficiency. Modern multicore systems

have high memory demands, devoting significant area and power to memory. Jain et al.

[18] propose a PIM system based on spin-transfer torque magnetic RAM (STT-MRAM)

for energy efficient, high performance computing called spin-transfer torque compute-in-

memory (STT-CIM).

STT-MRAM is a form of resistive memory that changes resistance based on the orienta-

tion of a magnetic tunnel junction (MTJ) accessed via a transistor (Figure 3.15). Each MTJ

has two layers, one with a fixed magnetic orientation, one with a changeable orientation.

The layers are separated by an oxide, and the MTJ changes between resistances based on

whether the layers share orientations or oppose each other. Opposite orientations have higher

resistance, representing logic ‘0’, while similar orientations have lower resistance, representing

logic ‘1’.

Read operations are performed by applying a voltage bias between bit line (BL) and

source line (SL) while the word line (WL) is selected. The resulting current is compared to

a reference to determine the state of the MTJ. Write operations are performed by passing

a sufficient current through the MTJ. The direction of the current determines the logical

value written.

Similar to many in-memory PIM implementations using traditional memory, STT-CIM

relies on selecting multiple word lines simultaneously to perform logical operations. Enabling

multiple word lines causes the resulting current flowing through the SL to be the summation

of the current flowing through each bit cell. There are three possible SL currents: if

44

Figure 3.15: STT-MRAM cell [18]

both MTJs are ‘0’, the current is a relatively low value, and if both MTJs are ‘1’, the

current is relatively high, with a mixture resulting in a current halfway between. Instead

of comparing to the standard reference current, a special current is used for each logical

operation. Comparing SL to a reference current halfway between the low current and the

middle current using a fully differential amplifier results in a logical OR on the positive

output of the amplifier and a NOR on the negative output. The only case where the SL

current is lower than the reference current is when both MTJs are ‘0’, resulting in an OR

operation. The paper also details a similar method for logical AND/NAND operations, and

describes using additional gates in conjunction with the current sensing method to realize

bitwise XOR and in memory addition. Addition operations require three additional logic

gates placed near the sense amplifiers, while XOR operations require a singular OR gate.

The benefits of using STT-MRAM for PIM operations as opposed to similar techniques

using traditional memory such as SRAM based implementations (Section 3.2) include energy

efficiency and memory density. STT-MRAM is non-volatile, and does not suffer from leakage

currents or high power consumption typical of traditional memory. The modifications

necessary for STT-CIM do not affect the core bit cells or memory arrays. All modifications

45

are made to peripheral circuitry, allowing PIM operations without affecting standard memory

design parameters such as density or read/write operation efficiency. Additionally read

currents used for PIM operations are significantly lower than write currents, preventing

accidental writes while performing PIM operations.

To support PIM operations, STT-CIM modifies peripheral circuitry. A special “CiM-

Type” input signal is fed to a decoder to signify the PIM operation being used. Read

circuitry is modified to support additional reference currents, and row decoders are modified

to support selecting multiple WLs. While row decoders require approximately double the

area to a conventional STT-MRAM system, the authors estimate that only contributes a

1.8% increase in overall chip area. Write operations are unaffected and do not need additional

hardware.

Sensing circuitry is also extended. Each column of memory requires two fully differential

sense amplifiers, four logic gates, and three multiplexers. Again the authors note that the

power and area overhead associated with enhancements are minimal compared to the overall

system.

STT-CIM has tighter read margins during PIM operations than a standard read on

STT-MRAM. Monte Carlo simulations of the proposed circuit considering process variations

in each MTJ show that an error correction scheme is necessary to reliably use STT-CIM.

Triple error correction, quadruple error detection using Hamming codes is sufficient for

reliable operation. Error correction does introduce overhead in the form of additional

hardware, and reduces overall performance. Each error correction requires three memory

array accesses. Even with the overhead, errors are infrequent enough that the performance

benefit of STT-CIM is still worthwhile.

To further improve performance, vector operations are supported. STT-CIM exploits

internal memory bandwidth to speed up data-parallel computations. For instance, in the

46

case where every element of two size N arrays are added together, rather than use N

PIM operations, a single vector PIM operation is used. A near-memory reducer supports

operations such as summation and Euclidean distance to address bandwidth issues returning

vector values. The reducer reduces results to a scalar value when possible before storing the

result. In order to limit overhead, vector operations are limited to vectors of either size four

or eight elements.

STT-CIM is controlled by a host processor using an extended instruction set architecture

(ISA). The host controls PIM operations by sending control signals including the operation

code, the operand addresses, and the destination address.

There are three criteria to operate on elements in STT-CIM. Elements must be in the

same bank, they must be in separate data rows, and they must be in the same column. The

authors describe techniques for data placement to facilitate using PIM operations. Three

methods for data mapping are presented, and shown to be useful in real-world applications.

While mapping data results in some small overhead, the assumption is that on a large enough

problem arranging the data once in the beginning is negligible compared to the overall run

time.

STT-CIM performance was measured using a cycle-accurate register transfer level (RTL)

simulation. A suite of 12 algorithms from various applications such as cryptography, text

processing, and optical character recognition forms the benchmark for an Intel Nios II

processor with a one megabyte STT-CIM scratchpad and eight element vector operations.

The baseline system assumed a standard STT-MRAM as main memory. Area overhead was

16.6% larger than the baseline, mostly because of the additional error correction hardware.

Memory access latency overhead was 0.8% due to greater WL and BL delays. Overall

performance improvements included an average of 3.83 times energy improvement and 3.93

times system performance at an application level.

47

The results Jain et al. present are promising. The area overhead introduced by STT-CIM

is minimal, and memory function is largely unaffected because modifications focus on periph-

eral circuitry as opposed to the memory array. If STT-MRAM becomes a viable alternative

to DRAM for main memory, STT-CIM is a viable architecture for data-parallel loads.

3.3.3 Computation-in-Memory Parallel Adder

There are many criteria used to evaluate a computer architecture - power consumption,

manufacturing cost, and relative speed, among others. Major improvements to computers,

as measured by these criteria, have largely been due to improvements in the electrical

characteristics as opposed to improvements in designs. As the limits of materials used in

manufacturing computers are reached, in order to continue to create better devices, different

architectures must be designed. The obvious improvement, parallelizing the computing

process, comes with its own set of difficulties. Nguyen et al. [29] address some of those

problems through the use of memristors in order to perform computation in memory.

The Von Neumann gap is infamous in the world of computer architecture. It refers to

the memory bottleneck that exists within modern computers. Modern processors are much

faster than modern memory, leading to a bottleneck and wasted time while the processor

waits for memory to catch up with a request. Du Nguyen et al. identify "a need for

a novel architecture that significantly reduces the memory bottleneck, massively supports

parallelism, and is energy efficient". A recent technology, the memristor, may offer a partial

solution. The electrical characteristics of a memristor are less important for the purposes of

understanding this paper; it is enough to know memristors are nanometer scale devices that

hold non-volatile memory in an analog manner by changing resistance values. A computation

in memory (CIM) architecture is described with an implementation of a parallel addition

algorithm to sum inputs in chunks. Considered are the passive memristors used to implement

the adder, active CMOS circuitry required to control and communicate with the adder, and

48

a peripheral interface to act between the CMOS and memristor components. Two types

of memristor cells are used: complementary resistive switching (CRS) and bipolar resistive

switching (BRS). BRS uses one memristor and a high or low resistance value to represent

logical 1 or 0. CRS contains two stacked memristors and alternates the resistances values

to represent logical 0 or 1. CRS cells require CMOS logic to transfer values between cells

as the total resistance of low or high is the same, while BRS cells may suffer from sneak

path currents, where bits may be misread as resistance values on separate paths sum to an

equivalent R value.

The read operation for a memristor is destructive; the act of reading changes its value.

Thus a "write-back" instruction must be issued to restore the value after a read. This

requires CMOS control logic to trigger. Depending on what kind of cell is used, more or

less additional circuitry will be required to use a memristor array. CRS cells require more

sense amplifiers (one for each crossbar), and muxes to distinguish which bit on a word is

being read. It takes more BRS cells overall to realize an adder circuit than CRS, thus BRS

cells require more voltage drives with more strength. The largest factor in the delay and

area of the proposed memristor adder circuits is the CMOS controllers required to use them.

Because of this, the designs scale well to an increased size, as the majority of space/time

tradeoffs are a result of the overhead. Overall delay is about one order of magnitude worse

than a traditional CMOS multicore design, although authors explain this as partially due to

optimistic results regarding caching in their simulation. The memristor designs however are

up to two orders of magnitude more energy efficient, and five orders of magnitude more area

efficient. The memristor parallel addition design shows promise for in memory logic. It is

shown to be scalable, and to apply to other forms of highly parallel logic aside from addition.

The main caveats that come with these exciting results is that memristors are new, and

largely unresearched. They do not have the same standard libraries as CMOS designs. They

49

are not suitable for general purpose computing at the moment, as their overall endurance

is poor, but some researchers are optimistic about improvements to endurance. Fabrication

processes still need to be researched in order to physically realize these devices. With enough

additional research, it is conceivable that memristor based memory architectures will become

useful.

3.4 Three Dimensional Integration

Three dimensional (3D) integration is a manufacturing technology that involves stacking

multiple layers of connected integrated circuits. Chips are stacked on top of each other and

joined using through silicon vias (TSVs). Benefits to 3D integration include reduced power

consumption, reduced noise, improved memory density and performance, and the ability to

create new architectures [39]. 3D integration uses shorter wires, lowering load capacitance

and resistance to improve energy efficiency and noise tolerance. Stacking chips allows greater

memory capacity in the same sized footprint to traditional two dimensional designs. Finally,

stacked chips enable PIM by tightly coupling logic and memory together.

Connecting logic to memory with a TSV facilitates PIM. TSV bandwidth is greater

than bandwidth available between chips connected by pins. Stacking chips eliminates pin

count concerns, and allows for high bandwidth, low latency memory [40]. Additionally,

DRAM peripheral circuitry can be moved to the logic layer, where timings are better.

While 3D integrated solutions do not place logic and memory in the same wafer like other

PIM implementations, the overall effect is similar. TSVs allow computer architects to take

advantage of internal memory bandwidth to perform data parallel operations, much like any

other PIM strategy.

50

3.4.1 Tesseract

The massive memory bandwidth available to 3D integrated architectures lends itself to big

data applications. Ahn et al. [14] propose Tesseract, a design which applies PIM concepts

to a 3D integrated memory design for accelerating large scale graph processing. Tesseract

seeks to enable “memory-capacity-proportional performance”, a feat which traditional multi

core architectures fail to provide.

Tesseract utilizes the Hybrid Memory Cube (HMC), a 3D-stacked DRAM standard.

HMC provides up to 320 GB/s of external memory bandwidth through eight high-speed serial

links. Multi core machines fail to scale with such a large bandwidth and are unable to utilize

the full potential performance. Motivated by the challenge of a system that scales, Tesseract

applies concepts of PIM to utilize the bandwidth of HMC. Internal memory bandwidth of a

HMC is even greater than external bandwidth, at 512 GB/s, further motivating PIM.

Tesseract is functionally a network of HMCs. Figure 3.16 shows a conceptual overview of

Tesseract. It is built on using HMCs with eight, eight GB DRAM layers. Each cube contains

32 vertical slices referred to as a vault connected via a crossbar network. Each vault contains

a 16 bank DRAM partition with a dedicated memory controller and an in-order core placed

on the logic layer, for a total of 32 cores per cube. The majority of total die area is taken

by DRAM, with all 32 cores taking up an order of magnitude less area. ARM Cortex A5

processors are used for vault cores.

Tesseract acts as an accelerator to a host processor. Tesseract is memory-mapped to the

host processor, allowing the host to access any region of the total system. The memory-

mapped region contained by the cubes is not cached or virtualized to avoid complexity

and overhead. The host processor is responsible for distributing graphs to vaults using a

specialized malloc call.

Tesseract cores are restricted to accessing only their own DRAM. Cores communicate

51

Figure 3.16: Tesseract architecture (not to scale) [14]

via a message passing mechanism. Computation is implemented using remote function calls.

Remote memory access is disallowed. Unlike traditional architectures, rather than passing

data for processing, Tesseract passes code for execution.

In order to make use of the full HMC memory bandwidth, Tesseract uses two hardware

prefetch mechanisms. Vault cores prefetch using a standard stride prefetcher, and through

a message-triggered prefetch. When a function is passed to a core, a message is included to

trigger prefetch before the function is executed.

Tesseract was evaluated using a cycle accurate x86-64 simulator. The baseline high-

performance system used 32 four GHz four core out of order processors with 128 GB of

DDR3 DRAM for a total of 102.4 GB/s of memory bandwidth accessible by the cores.

The simulation of Tesseract used a network of 16 HMCs with a total of 512 2 GHz in

order cores. The benchmarks used were a series of five graph algorithms implemented in

C++: Average Teenage Followers, Conductance, PageRank, Single-Source Shortest Path,

and Vertex Cover. Three input graphs were used, with the largest containing 7.4 million

vertices and 194 million edges, for a total of up to 5 GB of memory footprint. Tesseract’s

52

average system performance was found to be ten times better than the baseline, with an

87% reduction in energy consumption.

Tesseract’s model of communicating code instead of communicating data between pro-

cessor cores is innovative, and creates a system that scales well with additional cores. One

of the shortcomings of traditional multi core architectures is a failure to scale as more cores

are added. Placing cores on top of data, and using a high bandwidth 3D integrated memory

allows near linear scaling with additional cores. Tesseract is a promising solution to large

graph processing problems, and demonstrates the value of PIM concepts applied to 3D

integration for supporting big data applications.

3.4.2 HAMLeT

Providing higher bandwidth, lower latency memory on its own is not sufficient to solve

the memory wall problem. 3D die integration provides scalable main memory for big

data applications, but for an application to run efficiently, it must take advantage of the

memory architecture. Akin et al. propose Hardware Accelerated Memory Layout Transform

(HAMLeT) [31, 40], a hardware accelerated memory transform framework. By efficiently

reorganizing data, HAMLeT makes use of a 3D integrated memory architecture to provide

energy efficient, low latency computation.

HAMLeT transforms memory layout to allow a host processor to more efficiently com-

pute. A high level summary of HAMLeT’s operation is reading data into the logic layer,

reorganizing it locally, and then writing it back into stacked DRAM. Figure 3.17 shows a

typical 3D stacked DRAM (using HMC as an example) next to the HAMLeT modifications.

Three main components handle layout transformation operations: local buffers, buffer in-

terconnections, and a control unit. Many existing 3D integrated DRAM systems already

include an interconnection fabric in the form of a crossbar switch. HAMLeT extends the

crossbar with fast SRAM buffers and a control unit.

53

Figure 3.17: HAMLeT [40]

SRAM buffers act essentially as caches for data transformation. Buffers are sized accord-

ing to the DRAM configuration to minimize row buffer misses and avoid penalties for common

memory access patterns. HAMLeT and the host processor access memory in parallel, so

that transformation and computation do not interrupt each other. Parallel memory access

is achieved through carefully planned access patterns, such as block by block reorganization

where the host and HAMLeT operate on separate blocks at the same time.

Some data intensive applications require data transformation as part of computation. For

example, linear algebra or signal processing applications often use matrix transpositions or

3D matrix rotations. These operations are expensive to perform due memory access patterns

that are inefficient on traditional memory hierarchies. HAMLeT provides methods for matrix

transposition, matrix blocking, and 3D-matrix rotation. By utilizing buffers capable of

keeping pace with the massive memory bandwidth, and exploiting fine-grained parallelism

inherent with 3D-integrated memory with multiple vaults, HAMLeT offers efficient forms of

matrix transformations.

HAMLeT was modeled using CACTI-3DD, a modeling framework designed for 3D-

integrated DRAM. The three matrix transpositions described above were simulated on

HAMLeT, an Intel Xeon E3-1230 processor, and an Nvidia GTX 670 GPU. The Xeon

54

processor has a peak memory bandwidth of 21 GB/s, the GPU has a bandwidth of 192

GB/s, and the HAMLeT implementation has a peak bandwidth of 201 GB/s. HAMLeT

performed on average an order of magnitude better than either the processor or GPU. Both

the processor suffer from high memory access latency, and were only able to utilize a fraction

of their peak memory bandwidth. HAMLeT however is better suited to utilize high memory

bandwidth, and maintained above 90% peak bandwidth usage throughout the benchmarks.

The overhead involved with HAMLeT is minimal. The authors estimate 2-7% of the area

of each logic layer is required for a HAMLeT implementation, with 3-5.5% increase in power

consumption based on an HDL synthesized implementation produced in the Synopsis Design

Compiler.

HAMLeT presents an application specific accelerator using 3D stacked DRAM. For

computing requiring high bandwidth, low latency memory access, 3D-integration is a suitable

technology. HAMLeT is an example of leveraging the benefits for 3D-integration with

specialized logic for a specific application.

Chapter 4 FPGA-based PIM Simulation

This thesis’s contributions are to create an FPGA implementation of a PIM architecture

that extends an existing microcontroller. It is important to note the implementation models

the control flow and design of a PIM architecture, but does not include modified memory.

Traditional block memory is attached to a module performing PIM operations, as opposed

to a true PIM implementation, where the memory itself is partially used to perform logical

operations. Presented is a proof of concept design focusing on architectural features necessary

to realize a PIM system, without focusing on the detailed hardware implementation.

The organization of this chapter is as follows: Section 4.1 contains an overview of the

base microcontroller architecture and the PIM modifications, Section 4.2 describes the added

instructions, Section 4.3 discusses the example application of AES encryption, and Section

4.4 contains a comparison of the performance of the base microcontroller versus the PIM-

enabled implementation. Additionally, Chapter 5 goes into greater detail concerning design

trade offs surrounding the results, including a discussion of limitations of the design and

future work to mitigate some of the limitations.

4.1 Hardware Architecture

The physical hardware this project runs on is a Nexys DDR4 development board with a Xilinx

Artix-7 FPGA. Table 4.1 includes an overview of the technical specifications of the Artix-7.

The Artix-7 was chosen because the performance versus price met project requirements, and

for the Vivado Design Suite software’s availability for academic use. The hardware for the

project is implemented using the Very High Speed Integrated Circuit Hardware Description

Language (VHDL).

55

56

Table 4.1: Artix-7 FPGA Specifications

Part Number XC7A100T
Logic Cells 101,440
Slices 15,850
CLB Flip Flops 126,800
Distributed RAM (Kb) 1,188
Block RAMs (36 Kb each) 135
Clock Management Traces 6

4.1.1 ATmega103(L) Microcontroller

An ATmega103(L) microcontroller [41] forms the basis of the PIM implementation, and as

a baseline comparison. The ATmega103 is a CMOS 8-bit microcontroller based on the AVR

RISC ISA [42]. The microcontroller is a modified Harvard architecture with separate program

and data memory sized, 128 kilobytes and 4 kilobytes respectively, and 32 general purpose

registers. Instructions follow a two stage pipeline, where on the first clock cycle instructions

are fetched and decoded, and on the second clock cycle are executed and written back to

the destination. The ATmega103 is well suited as a base for highlighting new architectural

features due to its relatively small footprint, and the relative simplicity of the two stage RISC

pipeline. Additionally, the AVR ISA is well documented, with strong community support

including an open source tool chain in the AVR gcc compiler and related softwares.

The actual FPGA implementation of the microcontroller, referred to from this point on as

a soft core, was taken from an open source soft core by Ruslan Lepetenok [43]. Additionally

the project includes a counter for tracking clock cycles. The counter is enabled by setting

the output value of a general purpose input/output (GPIO) pin, allowing for software run

time information accurate to the clock cycle. Figure 4.1 (a) includes an example of the soft

core top level architecture.

57

4.1.2 PIM Modifications

In order to realize PIM instructions, the ATmega103 is modified with a special Data SRAM

containing an ALU. The SRAM is controlled by the instruction decoder, modified to provide

DMA style instructions. When a PIM operation is detected, control signals are generated

to directly interface with the memory from the decoder. The control signals govern the

operations, performed directly inside the memory and stored internally without passing

information along the data bus. Figure 4.1 (b) highlights the components modified from the

original soft core to create the PIM extended soft core.

58

(a) ATmega103 block diagram [41]

(b) PIM modifications

Figure 4.1: ATmega103 architecture and PIM modifications

59

Figure 4.2 shows a more detailed view of the PIM extended SRAM alluded to in 4.1 (b).

There are seven input signals: the address used by the unmodified portion of the soft core,

input data, write enable, two addresses used for PIM operations, a PIM enable signal, and

the PIM operation code. The included memory is a true dual port RAM with two read and

write capable ports. The “A” port is used as the memory access port for the microcontroller.

The “B” port is used exclusively internally for performing PIM operations. A PIM operation

functions by selecting the two PIM addresses for ports A and B. The memory feeds the

output of both ports to an internal ALU, performing an operation based on the op code

selected. The PIM address A and the ALU output are latched, and on the next clock cycle

fed to port B to write the result into memory.

Figure 4.2: ATmega103 data memory with PIM modifications

60

4.2 Processor in Memory Instructions

4.2.1 Instruction Format

All PIM instructions take the form of a two word instruction. The ATmega103 uses two byte

words, therefore PIM instructions are four bytes long in total. Every instruction contains

two 12 bit addresses, and a four bit op code used by the PIM ALU. Figure 4.3 describes

the instruction format. In order to integrate with the existing microcontroller, reserved op

codes are re-purposed as PIM instructions. The AVR ISA has reserved words from op codes

0x0001 to 0x00FF, so the first byte of every PIM instruction is 0x00. The next byte of the

first word is divided into the upper nibble of address A and the PIM op code. The second

word is divided into the lower byte of both addresses A and B. The final four bits required,

the upper nibble of address B, are stored in register 30. This means that PIM operations can

only be performed on 255 address blocks before register 30 needs to be set to a new value, an

operation that requires one clock cycle. There are 16 such blocks in the ATmega103 SRAM.

61

Figure 4.3: Format of a PIM instruction

A list of all supported PIM operations and their opcodes is detailed in Table 4.2. Oper-

ations are limited to bitwise logic, addition, subtraction, and one special operation: Move.

Move writes the value of operand B to address A, effectively performing an in-place copy and

paste of memory location B to memory location A. It is important to note that a hardware

implementation of addition and subtraction would require a full adder to be placed beneath

every column of SRAM, with the carries chained from the least significant bit to the most

significant bit. This thesis’ implementation operates under the assumption that given the

relatively slow clock frequency of the microcontroller (16 Mhz), the carries in the adder chain

have plenty of time to propagate and produce a result before the writeback on the next clock

cycle. In systems with a clock frequency on the order of GHz, addition/subtraction would

need to be done in multiple steps with latches for intermediate values in order to allow the

carries to propagate.

62

Table 4.2: Opcode List

Operation Opcode Operands Description
Nop 0000 No operands No operation
Not 0001 Operand A Return the negation of the value at address A
Move 0010 Operand B Write data word B to address A
XOR 0011 Operands A & B XOR data words at addresses A and B
NXOR 0100 Operands A & B Negation of XOR of data words A and B
NOR 0101 Operands A & B NOR data words at addresses A and B
NAND 0110 Operands A & B NAND data words at addresses A and B
OR 0111 Operands A & B OR data words at addresses A and B
AND 1000 Operands A & B AND data words at addresses A and B
Add 1001 Operands A & B Add data words at addresses A and B

Subtract 1010 Operands A & B Subtract data words at addresses A and B
Increment 1011 Operand A Increment data word at address A
Decrement 1100 Operand A Decrement data word at address A

4.2.2 Instruction Pipeline

In the AVR ISA, most instructions take one clock cycle, with some multi-word instructions

requiring additional clock cycles. PIM instructions follow suit, requiring two clock cycles

for a two word instruction. In reality, instructions take more clock cycles, as they are

divided into a two stage pipeline, with a fetch/decode stage, and an execute/write-back stage,

but instruction throughput is as though instructions took fewer cycles due to pipelining.

Figure 4.4 illustrates a sample pipeline containing a PIM instruction. On the first cycle,

the instruction is decoded. On the next cycle, the second word is decoded, and execution

begins. On the third clock cycle, the result of the PIM operation is written back into memory.

Performing 16 PIM operations in a row takes 33 clock cycles, two cycles per operation plus

an extra at the start of the pipeline when the first word is decoded.

63

Figure 4.4: Example pipeline of a PIM instruction

4.2.3 Typical PIM Operation Usage

Figure 4.5 contains an AVR assembly snippet for a typical programming pattern easily

replaced with a PIM operation. Values are loaded into registers 0 and 1 from memory

locations 0x100 and 0x200 respectively. The registers are added together, and then stored

back in memory location 0x100. Each load or store operation takes two clock cycles, while the

addition takes one, for a total of seven clock cycles. This entire process can be replicated in

a single PIM operation, which adds two memory locations together directly without loading

or storing values. The PIM operation takes two clock cycles, for a savings of five cycles. In

the case that register 30 does not already contain the upper nibble of address B (in this case

0x2), one clock cycle is required to set the proper value in the register, for a savings of only

four cycles.

In some cases, the final goal is to load a set of values into the registers. If there are

enough general purpose registers to contain all the values for a given program or function,

64

PIM operations do not save any time. Some applications, however, operate on more values,

and require frequent load/store operations. One such application, Advanced Encryption

Standard (AES) encryption, which operates on 16 byte blocks, is detailed in Section 4.3.

LDS R0, 0x100 ;Load direct from data space

;memory location 0x100 to

;register 0 (2 word instruction)

LDS R1, 0x200 ;Load direct from data space

;memory location 0x200 to

;register 1 (2 word instruction)

ADD R0, R1 ;Add registers 0 and 1 and store

;the result in register 0

STS 0x100 , R0 ;Store direct to data space

;register 0 to memory location

;0x100 (2 word instruction)

Figure 4.5: Example usage

4.3 Example Application

AES, also referred to as a Rijndael block cipher, is one of the most widely used symmetric

key encryption algorithms [44]. AES can be performed using a 128, 192, or 256 bit key in 10,

12, or 14 rounds respectively, although this implementation only uses a 128 bit key. To start,

the initial 128 bit key is used to derive a separate key for each round. The plaintext message

to be encrypted is stored in a 4x4 matrix referred to as the state. The state is combined with

the first round key using a bitwise xor. Then a series of transformations are performed on

65

the state in each round: SubBytes (Figure 4.6 (a)), ShiftRows (Figure 4.6 (b)), MixColumns

(Figure 4.6 (c)), and AddRoundKey (Figure 4.6 (d)). SubBytes involves substituting each

byte of the state with a byte from a pre-computed lookup table referred to as a substitution

box, or S-box. ShiftRows shifts each byte in a row cyclically by an offset. MixColumns

transforms the columns of the state by multiplication with a matrix (this can be performed

as a series of shifts followed by a conditional xor with 0x1B). Finally, AddRoundKey xors

the state with the current round key. In the final round, the MixColumns step is omitted.

The resulting state is the cipher.

66

(a) SubBytes

(b) ShiftRows

(c) MixColumns

(d) AddRoundKey

Figure 4.6: AES round steps illustrated [44]

67

AES is well suited to PIM operations because it satisfies two basic criteria: AES operates

on more values than can be stored in the register file, and relies on a series of simple bitwise

operations. Both the state and each round key are 16 bytes long, meaning during each

round 32 bytes must be loaded and stored. For example, the final step of each round,

AddRoundKey, would require loading each byte from memory for both the state and the

round key, xoring the values together, and storing the result back to memory. Using PIM

operations, the operation is performed in just two clock cycles per byte, as opposed to five.

Section 4.4 compares the performance of AES using the base ATmega103 versus a PIM

extended microcontroller.

4.4 Results

4.4.1 Software Comparison

One 16 byte cipher was calculated on both an ATmega103 soft core, and the PIM enhanced

implementation. The AES code is written in C, based on a GPL licensed library [45]. In

both cases the code was compiled using the AVR-gcc compiler. PIM operations are inserted

as inline assembly using the .word directive to define individual words of memory with the

PIM instruction. This is necessary because the compiler and assembler have no knowledge

of PIM operations. The source code for both the standard AES program and the PIM AES

program can be found in Appendix A.

PIM operations significantly improve the performance of AES encryption, at the cost of

program size. Table 4.3 shows the base system compared to the PIM enhanced implemen-

tation. Discrepancies in clock cycle totals come from minor differences in how the compiler

optimizes code while profiling because the hardware based counter still requires code to

enable and disable the GPIO pin controlling the counter. Key expansion for all 10 rounds

takes the majority of the time in this implementation of AES, and does not include any

68

PIM operations. Key expansion is only performed once; subsequent blocks use the same key.

After the key schedule is created, encryption using PIM operations takes 38.7% less time.

Encrypting more blocks of plaintext will result in similar time savings per block, and similar

memory overhead per block.

While the memory overhead is significant, both programs require small amounts com-

pared to the overall available program memory. The ATmega103 has 128Kb of program

memory, and the PIM encryption requires just under 3% of the total program memory. In

modern times where memory capacity is larger and cheaper, requiring a larger program could

be considered an acceptable trade off.

Table 4.3: Performance comparison of AES encryption on base ATmega103 and
PIM enhanced ATmega103

ATmega103 PIM Difference

Total AES (clock cycles) 16,069 12,418 22.7% less time

AES encryption only (clock cycles) 9,461 5,797 38.7% less time

Key Expansion clock (cycles) 6,610 6,619 –

Program Memory size (bytes) 2,424 3,740 54.3% more memory

The performance presented in 4.3 is not entirely fair. In order to offer a true comparison,

one must consider that PIM operations must be inlined. Most of the time savings from PIM

operations occur when xoring the key with the state at the end of each round. Figure 4.7

contains the xor_block function, and Figure 4.8 contains the generated assembly (function

overhead is omitted for the purpose of illustration). In total, xor_block takes 181 clock cycles

to run, and requires 13 words of program memory. The PIM equivalent xor_block (Figure

4.9) operates directly on the memory locations of the state and key, takes 34 clock cycles to

69

run, and requires 33 words of program memory. The standard implementation uses pointers

to operate on arrays, and loops to increment the pointer. If instead it is unrolled by using a

pointer to every single array location, it takes 117 clock cycles to perform the equivalent of

the xor_block function. The trade off between the PIM approach and the standard approach

is that the standard approach can be called on any two arrays via a function call at the cost

of some overhead, whereas the PIM approach must be repeated inline in memory with direct

addresses that are known at compile time.

void xor_block (uint8_t * d, uint8_t * s)

{

for (uint8_t i = 0 ; i < N_BLOCK ; i++)

{

*d++ ^= *s++ ;

}

}

Figure 4.7: Function to xor two 16 byte arrays

70

l d i r18 , 0 ; initialize iterator

ld r24 , Z ; load destination value

ld r25 , X+ ; load source value

eor r24 , r25 ; xor values together

st Z+, r24 ; store xor result in destination memory location

subi r18 , 0xFF ; increment r18 by 1

cpi r18 , 0x10 ; compare iterator to 16

brne .-14 ; branch if not equal (branch goes to ld r24, Z)

ret ; return from function

Figure 4.8: Generated assembly for function in Figure 4.7

71

//set register 30 for upper nibble of B address

asm volatile("ldi r30, 0""\n\t":::"r30");

//0x3 is the PIM op code for xor

asm volatile(".word 0x0003, 0x6080""\n\t"::);

asm volatile(".word 0x0003, 0x6181""\n\t"::);

asm volatile(".word 0x0003, 0x6282""\n\t"::);

asm volatile(".word 0x0003, 0x6383""\n\t"::);

asm volatile(".word 0x0003, 0x6484""\n\t"::);

asm volatile(".word 0x0003, 0x6585""\n\t"::);

asm volatile(".word 0x0003, 0x6686""\n\t"::);

asm volatile(".word 0x0003, 0x6787""\n\t"::);

asm volatile(".word 0x0003, 0x6888""\n\t"::);

asm volatile(".word 0x0003, 0x6989""\n\t"::);

asm volatile(".word 0x0003, 0x6A8A""\n\t"::);

asm volatile(".word 0x0003, 0x6B8B""\n\t"::);

asm volatile(".word 0x0003, 0x6C8C""\n\t"::);

asm volatile(".word 0x0003, 0x6D8D""\n\t"::);

asm volatile(".word 0x0003, 0x6E8E""\n\t"::);

asm volatile(".word 0x0003, 0x6F8F""\n\t"::);

Figure 4.9: PIM implementation of function in Figure 4.7

PIM operations requiring direct addressing is a major limitation in the implementation.

All memory locations to be accessed through a PIM operation must be known at compile

time, preventing the use of common programming constructs such as loops or array offsets.

Consider the code snippet in Figure 4.10; it appears to be a strong candidate for improvement

with PIM operations, as it contains more values than could fit in the register file, and uses

72
f2(x) ((x) & 0x80 ? (x << 1) ^ 0x011B : x << 1);
void mix_sub_columns (int dt[16], int st[16])
{

int j = 5 ;
int k = 10 ;
int l = 15 ;
for (int i = 0 ; i < 4 ; i += 4)
{

int a = st [i] ;
int b = st [j] ; j = (j+N_COL) & 15 ;
int c = st [k] ; k = (k+N_COL) & 15 ;
int d = st [l] ; l = (l+N_COL) & 15 ;
int a1 = s_box(a);
int b1 = s_box (b);
int c1 = s_box (c);
int d1 = s_box (d);
int a2 = f2(a1);
int b2 = f2(b1);
int c2 = f2(c1);
int d2 = f2(d1);
dt[i] = a2 ^ b2^b1 ^ c1 ^ d1;
dt[i+1] = a1 ^ b2 ^ c2^c1 ^ d1;
dt[i+2] = a1 ^ b1 ^ c2 ^d2^d1;
dt[i+3] = a2^a1 ^ b1 ^ c1 ^ d2;

}
}

Figure 4.10: Logical values in the mix_sub_columns function are dependent on
run time addresses, preventing the use of PIM operations

a series of xor operations. The problem is that the s_box function returns a value from an

in-memory lookup table, accessed using the current state as the index. The state value is

only available at run time, thus a PIM operation cannot be addressed to use a value from

the s_box lookup table. All of the logical operations in the function rely on values indexed

by the state, preventing the use of PIM operations. Alternatives to mitigate the limitations

introduced by the addressing mode of PIM operations are discussed in Chapter 5.

73

4.4.2 Hardware Comparison

The other design comparison to consider is the differences in the hardware itself. Adding PIM

operations to a microcontroller results in area overhead on the chip in the form of additional

logic gates. The hardware overhead of the PIM enhanced ATmega103 (Figure 4.11 (b)) is

minimal compared to the baseline (Figure 4.11 (a)). Neither design uses significant FPGA

resources compared to the total available, and the only resource the PIM implementation

uses significantly more of is IO blocks. For FPGA based soft core microcontrollers, given

the limited resource overhead for noticeable performance improvements, PIM is a viable

architectural strategy.

It is important to note that on an ASIC, the hardware area overhead is more significant.

Based on similar works that fabricated PIM ASICs (for example 3.2.4), 10-20% area overhead

is a reasonable estimate for an ASIC implementation.

74

(a) Base ATmega103

(b) PIM enhanced ATmega103

Figure 4.11: FPGA resource utilization

Chapter 5 Conclusions and Future Work

PIM computer architectures show promise in two main problem domains: applications bot-

tlenecked by memory latency, and applications bottlenecked by register availability. Modern

applications involving large data sets, such as machine learning or DNA sequencing, do not

scale well with traditional von Neumann architectures, where the amount of data accesses

overwhelms the computational effort. PIM provides a mechanism for memory bandwidth

proportional performance for data hungry applications. On a smaller scale, PIM also shows

promise to accelerate applications that fill a register file. In the case where a value must be

loaded to a register, operated on, and stored back to memory in order to free the register, PIM

speeds up execution by performing operations directly in memory. This thesis’s contributions

focused on this second domain, enhancing an existing microcontroller with a set of PIM

operations. Section 5.1 discusses limitations of the implementation and potential ways to

mitigate them, and Section 5.2 provides suggested future work.

5.1 Implementation Limitations

The major limitation of this thesis’s implementation of PIM operations on an ATmega103

is it only supports direct addressing. PIM operations can only be performed on addresses

known at compile time, and do not support accessing an array by an offset. For instance, the

common construct of iterating over an array is impossible. A ten element array could only

be operated on by placing ten sequential PIM instructions in program memory, instead of

using a few instructions to iterate over any size array with a for loop. Two potential solutions

to introduce indirect addressing are changing the instruction format of PIM operations, or

using a PIM program memory.

The instruction format for PIM operations does not lend itself to run time addressing

75

76

because addresses are stored in program memory, which cannot be changed. If the addresses

were instead stored in a location capable of changing at run time, such as the register file,

indirect addressing would be possible. The trade off is that some amount of the register

file must be reserved, and there is overhead involved setting up address registers. Storing

two 12 bit addresses would require three registers. Using the base ISA, it would take a

clock cycle to set each register, nullifying much of the time savings involved by performing

in memory operations. Alternatively, if only 8 bits of each address were stored in registers,

PIM operations could be performed on 255 address long blocks. The block position would

need to be known at run time, but the offset within the block could be set at run time.

In that case, adding every value of two arrays would involve a PIM operation followed by

incrementing each address register, repeated in a loop until the end of the array is reached

(or the end of the block). Partitioning PIM operations into blocks would necessitate a PIM

aware compiler tool chain in order to intelligently place data structures within blocks.

The other alternative method of implementing indirect addressing is to use a PIM capable

program memory. In the same example as before, the program memory would contain a PIM

operation on the data memory, followed by a PIM operation to increment the instruction

affecting data memory. The major trade off in this situation is additional hardware for

the program memory, and in compiler complexity. Self-modifying code greatly increases the

complexity of a program, and strictly defined rules for how program memory PIM operations

could be used would be required. Extra hardware could be kept to a minimum by designating

a section of the program memory as PIM; a block of program memory addresses would be

enhanced with PIM hardware, while the rest of the program memory is constructed as

normal. All PIM operations would need to be placed within the PIM section.

The challenges of supporting indirect addressing make another inherent challenge for

PIM architectures apparent. In memory operations increase performance, but addressing

77

multiple locations with a single instruction introduces overhead. Performing an in memory

operation requires providing as many addresses as there are operands. If calculating those

addresses takes as long as loading the values instead, there is no point to PIM operations.

When designing a PIM system, one must make trade offs in the address space accessible, the

time spent creating addresses, and the hardware reserved for PIM operations.

5.2 Future Work

The extra FPGA resource utilization of the PIM enhanced ATmega103 was insignificant

compared to the baseline. For this reason it is a strategy worth considering for future FPGA

based systems. An interesting topic for future research would be to compare those results

in an ASIC. By creating a VLSI implementation of the design, with the memory hardware

details defined explicitly rather than using block RAM, a better estimate of both hardware

area and power consumption can be made.

The other great challenge for any new computer architecture is to support the architecture

with programming tools. In order to be used in a practical system, PIM operations must be

supported by a compiler. Development of the PIM AES program was slow because of the

challenges of interacting with an optimizing compiler not aware of the full ISA. Any memory

location touched by a PIM operation is marked volatile to let the compiler know memory

location values need to be reloaded every time because the values might have changed. Inline

assembly PIM operations were added by compiling a program, checking the memory map

file, and adding the PIM operations using the locations from the map, and re-compiling with

the PIM operations. Beyond just being inconvenient, this process makes optimization more

difficult, as it adds constraints to the compiler and programmer. Future work would involve

adding the PIM instructions to the assembler and compiler, and updating the linker and

loader to be aware of PIM and plan the memory mapping to facilitate PIM operations.

Appendix A C Source Code

A.1 AES.c

This section includes the source code for AES encryption using the default ATmega103.

#include "AES.h"

#include <avr/pgmspace.h>

#include <stdint.h>

#include <avr/io.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "softcore_util.h"

extern unsigned char RAM_file[FILE_SIZE];

// Allocate variables on stack so address is assigned at compile time,

↪→ appears in map file

static const uint8_t Rcon[11] = { 0x8b, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,

↪→ 0x1b, 0x36 };

//initialize vector

uint8_t iv [N_BLOCK] = {0x69, 0x6e, 0x69, 0x74, 0x69, 0x61, 0x6c, 0x69, 0x7a, 0x65,

↪→ 0x76, 0x65, 0x63, 0x74, 0x6f, 0x72};

uint8_t cipher [16];

//this is my key!!

uint8_t key[] = { 0x74, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x6d, 0x79, 0x20,

↪→ 0x6b, 0x65, 0x79, 0x21, 0x21 };

uint8_t key_sched[KEY_SCHED_BYTES];

78

79

//shh its a secret

uint8_t plaintext[] = { 0x73, 0x68, 0x68, 0x20, 0x69, 0x74, 0x73, 0x20, 0x61, 0x20,

↪→ 0x73, 0x65, 0x63, 0x72, 0x65, 0x74 };

volatile uint8_t s1[N_BLOCK];

volatile uint8_t s2[N_BLOCK];

int main(void)

{

int blocks = 1; // 1 block for every 16 bytes in plaintext

//0x3EC5 total 16,069

set_key(key, key_sched); //0x19d2 6610

PORTA = 0x03;

//0x24f5 9461

cbc_encrypt(plaintext, cipher, blocks, iv, key_sched);

PORTA = 0x02;

Interrupt_Loop(0x060);

return 0;

}

uint8_t s_box (uint8_t x)

{

return (uint8_t) RAM_file[x];

}

uint8_t set_key(uint8_t key[], uint8_t key_sched[])

80

{

uint8_t hi = HI; //(ROUND + 1) << 4

int keylen = KEYLEN; //16 bytes long

copy_n_bytes (key_sched, key, keylen) ;

uint8_t t[4] ;

uint8_t next = keylen ;

for (uint8_t cc = keylen, rc = 1 ; cc < hi ; cc += N_COL)

{

//Iterate through key_sched 4 bytes at a time

//starting with 12, 13, 14, 15, ending with

//168, 169, 170, 171

for (uint8_t i = 0 ; i < N_COL ; i++)

t[i] = key_sched [cc-4+i] ;

if (cc == next)

{

rc = Rcon[cc >> 4]; //Same as division by 16, goes 1 to 10

next += keylen ;

uint8_t ttt = t[0] ; //cannot be precomputed

t[0] = s_box (t[1]) ^ rc ;

t[1] = s_box (t[2]) ;

t[2] = s_box (t[3]) ;

t[3] = s_box (ttt) ;

}

uint8_t tt = cc - keylen ;

for (uint8_t i = 0 ; i < N_COL ; i++)

key_sched [cc + i] = key_sched [tt + i] ^ t[i] ;

}

return (uint8_t) SUCCESS;

}

81

uint8_t cbc_encrypt (uint8_t * plain, uint8_t * cipher, int n_block, uint8_t iv

↪→ [N_BLOCK], uint8_t * key_sched)

{

while (n_block--)

{

xor_block (iv, plain) ;

if (encrypt (iv, iv, key_sched, ROUND) != SUCCESS)

return FAILURE ;

copy_n_bytes (cipher, iv, N_BLOCK) ; // copy iv into cipher?

plain += N_BLOCK ;

cipher += N_BLOCK ;

}

return SUCCESS ;

}

uint8_t encrypt (uint8_t plain [N_BLOCK], uint8_t cipher [N_BLOCK], uint8_t

↪→ key_sched[KEY_SCHED_BYTES], int round)

{

if (round)

{

uint8_t r;

copy_and_key ((uint8_t*)s1, plain, (uint8_t*) (key_sched)) ;

for (r = 1 ; r < round ; r++)

{

mix_sub_columns ((uint8_t*)s2, (uint8_t*)s1) ;

copy_and_key ((uint8_t*)s1, (uint8_t*)s2, (uint8_t*) (key_sched + r *

↪→ N_BLOCK)) ;

82

}

shift_sub_rows ((uint8_t*)s1) ;

copy_and_key (cipher, (uint8_t*)s1, (uint8_t*) (key_sched + r * N_BLOCK)) ;

return SUCCESS;

}

else

return FAILURE;

}

void copy_n_bytes (uint8_t * d, uint8_t * s, uint8_t nn)

{

while (nn >= 4)

{

*d++ = *s++ ; // some unrolling

*d++ = *s++ ;

*d++ = *s++ ;

*d++ = *s++ ;

nn -= 4 ;

}

while (nn--)

*d++ = *s++ ;

}

void copy_and_key (uint8_t * d, uint8_t * s, uint8_t * k)

{

for (uint8_t i = 0 ; i < N_BLOCK ; i ++)

{

*d++ = *s++ ^ *k++ ;

}

}

83

void mix_sub_columns (uint8_t dt[N_BLOCK], uint8_t st[N_BLOCK])

{

uint8_t j = 5 ;

uint8_t k = 10 ;

uint8_t l = 15 ;

for (uint8_t i = 0 ; i < N_BLOCK ; i += N_COL)

{

uint8_t a = st [i] ;

uint8_t b = st [j] ; j = (j+N_COL) & 15 ;

uint8_t c = st [k] ; k = (k+N_COL) & 15 ;

uint8_t d = st [l] ; l = (l+N_COL) & 15 ;

uint8_t a1 = s_box(a);

uint8_t b1 = s_box (b);

uint8_t c1 = s_box (c);

uint8_t d1 = s_box (d);

uint8_t a2 = f2(a1);

uint8_t b2 = f2(b1);

uint8_t c2 = f2(c1);

uint8_t d2 = f2(d1);

dt[i] = a2 ^ b2^b1 ^ c1 ^ d1 ;

dt[i+1] = a1 ^ b2 ^ c2^c1 ^ d1 ;

dt[i+2] = a1 ^ b1 ^ c2 ^ d2^d1 ;

dt[i+3] = a2^a1 ^ b1 ^ c1 ^ d2 ;

}

}

void shift_sub_rows (uint8_t st [N_BLOCK])

{

st [0] = s_box (st [0]) ; st [4] = s_box (st [4]) ;

84

st [8] = s_box (st [8]) ; st [12] = s_box (st [12]) ;

uint8_t tt = st [1] ;

st [1] = s_box (st [5]) ; st [5] = s_box (st [9]) ;

st [9] = s_box (st [13]) ; st [13] = s_box (tt) ;

tt = st[2] ; st [2] = s_box (st [10]) ; st [10] = s_box (tt) ;

tt = st[6] ; st [6] = s_box (st [14]) ; st [14] = s_box (tt) ;

tt = st[15] ;

st [15] = s_box (st [11]) ; st [11] = s_box (st [7]) ;

st [7] = s_box (st [3]) ; st [3] = s_box (tt) ;

}

void xor_block (uint8_t * d, uint8_t * s)

{

for (uint8_t i = 0 ; i < N_BLOCK ; i++)

{

*d++ ^= *s++ ;

}

}

A.2 PIM_AES.c

This section includes the source code for AES encryption using PIM operations.

#include "AES.h"

#include <avr/pgmspace.h>

#include <stdint.h>

#include <avr/io.h>

#include <stdio.h>

#include <stdlib.h>

85

#include <string.h>

#include <util/delay_basic.h>

#include "softcore_util.h"

// Pre computed in memory s−box

extern unsigned char RAM_file[FILE_SIZE];

// Allocate variables on heap so address is assigned at compile time, appears

↪→ in map file

static const uint8_t Rcon[11] = { 0x8b, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,

↪→ 0x1b, 0x36 };

// WARNING: THIS CODE IS NOT PORTABLE

// Special processor in memory instructions in this file make certain

↪→ assumptions about

// memory locations of global variables. In order for this to work, all of

↪→ the following

// global variables must be allocated at the location commented

//initial vector RAM address 0x060

//"initializevector"

volatile uint8_t iv [N_BLOCK] = {0x69, 0x6e, 0x69, 0x74, 0x69, 0x61, 0x6c, 0x69, 0x7a,

↪→ 0x65, 0x76, 0x65, 0x63, 0x74, 0x6f, 0x72};

//cipher to be computed RAM address 0x15c

volatile uint8_t cipher [N_BLOCK];

//symmetric key RAM address 0x070

//"this is my key!!"

86

uint8_t key[] = { 0x74, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x6d, 0x79, 0x20,

↪→ 0x6b, 0x65, 0x79, 0x21, 0x21 };

//temporary state variable RAM address 0x09c

volatile uint8_t s1[N_BLOCK];

//temporary state variable RAM address 0x16c

volatile uint8_t s2[N_BLOCK];

//key computed for all 10 rounds RAM address 0x0ac

volatile uint8_t key_sched[KEY_SCHED_BYTES];

//plaintext to hide RAM address 0x080

//"shh its a secret"

uint8_t plaintext[] = { 0x73, 0x68, 0x68, 0x20, 0x69, 0x74, 0x73, 0x20, 0x61, 0x20,

↪→ 0x73, 0x65, 0x63, 0x72, 0x65, 0x74 };

int main(void)

{

int blocks = 1; // 1 block for every 16 bytes in plaintext

//3082 total 12,418

PORTA = 0x03;

set_key(key, (uint8_t *)key_sched); //19db 6,619

PORTA = 0x02; //16a5 5797

cbc_encrypt_PIM(plaintext, cipher, blocks, iv, (uint8_t*)key_sched);

//PORTA = 0x02;

Interrupt_Loop(0x0060);

return 0;

}

87

// Function that combines the first three steps used in rounds

// 1−9 of AES

void mix_sub_columns (uint8_t dt[N_BLOCK], uint8_t st[N_BLOCK])

{

uint8_t j = 5 ;

uint8_t k = 10 ;

uint8_t l = 15 ;

for (uint8_t i = 0 ; i < N_BLOCK ; i += N_COL)

{

uint8_t a = st [i] ;

uint8_t b = st [j] ; j = (j+N_COL) & 15 ;

uint8_t c = st [k] ; k = (k+N_COL) & 15 ;

uint8_t d = st [l] ; l = (l+N_COL) & 15 ;

uint8_t a1 = s_box(a);

uint8_t b1 = s_box (b);

uint8_t c1 = s_box (c);

uint8_t d1 = s_box (d);

uint8_t a2 = f2(a1);

uint8_t b2 = f2(b1);

uint8_t c2 = f2(c1);

uint8_t d2 = f2(d1);

dt[i] = a2 ^ b2^b1 ^ c1 ^ d1 ;

dt[i+1] = a1 ^ b2 ^ c2^c1 ^ d1 ;

dt[i+2] = a1 ^ b1 ^ c2 ^ d2^d1 ;

dt[i+3] = a2^a1 ^ b1 ^ c1 ^ d2 ;

}

}

88

// Looks up s−box value from table in RAM

uint8_t s_box (uint8_t x)

{

return (uint8_t) RAM_file[x];

}

// Calculate the keys for all ten rounds and store in an array

uint8_t set_key(uint8_t key[], uint8_t key_sched[])

{

uint8_t hi = HI; //(ROUND + 1) << 4

int keylen = KEYLEN; //16 bytes long

copy_n_bytes (key_sched, key, keylen) ;

uint8_t t[4] ;

uint8_t next = keylen;

for (uint8_t cc = keylen, rc = 1 ; cc < hi ; cc += N_COL)

{

//Iterate through key_sched 4 bytes at a time

//starting with 12, 13, 14, 15, ending with

//168, 169, 170, 171

for (uint8_t i = 0 ; i < N_COL ; i++)

t[i] = key_sched [cc-4+i] ;

if (cc == next)

{

rc = Rcon[cc >> 4]; //Same as division by 16, goes 1 to 10

next += keylen ;

uint8_t ttt = t[0] ; //cannot be precomputed

t[0] = s_box (t[1]) ^ rc ;

t[1] = s_box (t[2]) ;

89

t[2] = s_box (t[3]) ;

t[3] = s_box (ttt) ;

}

uint8_t tt = cc - keylen ; //Starts at 0, goes to 152 increments

// of 4

for (uint8_t i = 0 ; i < N_COL ; i++)

key_sched [cc + i] = key_sched [tt + i] ^ t[i] ;

}

return (uint8_t) SUCCESS;

}

// Encrypt in cypher block chaining mode

uint8_t cbc_encrypt_PIM (uint8_t * plain, volatile uint8_t * cipher, int n_block,

↪→ volatile uint8_t * iv, uint8_t * key_sched)

{

while (n_block--)

{

//xor_block ((uint8_t *)iv, plain); //takes c9 clocks (201)

asm volatile("ldi r30, 0""\n\t":::"r30");

asm volatile(".word 0x0003, 0x6080""\n\t"::);

asm volatile(".word 0x0003, 0x6181""\n\t"::);

asm volatile(".word 0x0003, 0x6282""\n\t"::);

asm volatile(".word 0x0003, 0x6383""\n\t"::);

asm volatile(".word 0x0003, 0x6484""\n\t"::);

asm volatile(".word 0x0003, 0x6585""\n\t"::);

asm volatile(".word 0x0003, 0x6686""\n\t"::);

asm volatile(".word 0x0003, 0x6787""\n\t"::);

90

asm volatile(".word 0x0003, 0x6888""\n\t"::);

asm volatile(".word 0x0003, 0x6989""\n\t"::);

asm volatile(".word 0x0003, 0x6A8A""\n\t"::);

asm volatile(".word 0x0003, 0x6B8B""\n\t"::);

asm volatile(".word 0x0003, 0x6C8C""\n\t"::);

asm volatile(".word 0x0003, 0x6D8D""\n\t"::);

asm volatile(".word 0x0003, 0x6E8E""\n\t"::);

asm volatile(".word 0x0003, 0x6F8F""\n\t"::);

// no need to copy back into cipher after like this

if (encrypt ((uint8_t*)iv, (uint8_t*)cipher, key_sched, ROUND) != SUCCESS)

return FAILURE ;

//copy_n_bytes ((uint8_t *)cipher, (uint8_t*)iv, N_BLOCK) ; // copy iv

↪→ into cipher?

//plain += N_BLOCK ;

//cipher += N_BLOCK ;

}

return SUCCESS ;

}

// Perform actual AES on 16 byte block

uint8_t encrypt (uint8_t * iv, uint8_t* cipher, uint8_t key_sched[KEY_SCHED_BYTES], int

↪→ round)

{

if (round)

{

91

//iv starts at 0x060, key_sched at 0x0ac, s1 at 0x09c, cipher 0x15c

//copy_and_key ((uint8_t*)s1, (uint8_t*)iv, (uint8_t*) (key_sched));

// Copy iv to s1

asm volatile("ldi r30, 0x00""\n\t":::"r30");

asm volatile(".word 0x0002, 0x9C60""\n\t"::);

asm volatile(".word 0x0002, 0x9D61""\n\t"::);

asm volatile(".word 0x0002, 0x9E62""\n\t"::);

asm volatile(".word 0x0002, 0x9F63""\n\t"::);

asm volatile(".word 0x0002, 0xA064""\n\t"::);

asm volatile(".word 0x0002, 0xA165""\n\t"::);

asm volatile(".word 0x0002, 0xA266""\n\t"::);

asm volatile(".word 0x0002, 0xA367""\n\t"::);

asm volatile(".word 0x0002, 0xA468""\n\t"::);

asm volatile(".word 0x0002, 0xA569""\n\t"::);

asm volatile(".word 0x0002, 0xA66A""\n\t"::);

asm volatile(".word 0x0002, 0xA76B""\n\t"::);

asm volatile(".word 0x0002, 0xA86C""\n\t"::);

asm volatile(".word 0x0002, 0xA96D""\n\t"::);

asm volatile(".word 0x0002, 0xAA6E""\n\t"::);

asm volatile(".word 0x0002, 0xAB6F""\n\t"::);

// s1 ^= key_sched

//asm volatile("ldi r30, 0x00""\n\t":::"r30");

asm volatile(".word 0x0003, 0x9CAC""\n\t"::);

asm volatile(".word 0x0003, 0x9DAD""\n\t"::);

asm volatile(".word 0x0003, 0x9EAE""\n\t"::);

asm volatile(".word 0x0003, 0x9FAF""\n\t"::);

92

asm volatile(".word 0x0003, 0xA0B0""\n\t"::);

asm volatile(".word 0x0003, 0xA1B1""\n\t"::);

asm volatile(".word 0x0003, 0xA2B2""\n\t"::);

asm volatile(".word 0x0003, 0xA3B3""\n\t"::);

asm volatile(".word 0x0003, 0xA4B4""\n\t"::);

asm volatile(".word 0x0003, 0xA5B5""\n\t"::);

asm volatile(".word 0x0003, 0xA6B6""\n\t"::);

asm volatile(".word 0x0003, 0xA7B7""\n\t"::);

asm volatile(".word 0x0003, 0xA8B8""\n\t"::);

asm volatile(".word 0x0003, 0xA9B9""\n\t"::);

asm volatile(".word 0x0003, 0xAABA""\n\t"::);

asm volatile(".word 0x0003, 0xABBB""\n\t"::);

//ROUND 1

mix_sub_columns ((uint8_t*)s2, (uint8_t*)s1);

//Copy s2 into s1

asm volatile("ldi r30, 0x01""\n\t":::"r30");

asm volatile(".word 0x0002, 0x9C6C""\n\t"::);

asm volatile(".word 0x0002, 0x9D6D""\n\t"::);

asm volatile(".word 0x0002, 0x9E6E""\n\t"::);

asm volatile(".word 0x0002, 0x9F6F""\n\t"::);

asm volatile(".word 0x0002, 0xA070""\n\t"::);

asm volatile(".word 0x0002, 0xA171""\n\t"::);

asm volatile(".word 0x0002, 0xA272""\n\t"::);

asm volatile(".word 0x0002, 0xA373""\n\t"::);

asm volatile(".word 0x0002, 0xA474""\n\t"::);

asm volatile(".word 0x0002, 0xA575""\n\t"::);

asm volatile(".word 0x0002, 0xA676""\n\t"::);

asm volatile(".word 0x0002, 0xA777""\n\t"::);

93

asm volatile(".word 0x0002, 0xA878""\n\t"::);

asm volatile(".word 0x0002, 0xA979""\n\t"::);

asm volatile(".word 0x0002, 0xAA7A""\n\t"::);

asm volatile(".word 0x0002, 0xAB7B""\n\t"::);

//s1 ^= key_sched from 0x0bc

asm volatile("ldi r30, 0x00""\n\t":::"r30");

asm volatile(".word 0x0003, 0x9CBC""\n\t"::);

asm volatile(".word 0x0003, 0x9DBD""\n\t"::);

asm volatile(".word 0x0003, 0x9EBE""\n\t"::);

asm volatile(".word 0x0003, 0x9FBF""\n\t"::);

asm volatile(".word 0x0003, 0xA0C0""\n\t"::);

asm volatile(".word 0x0003, 0xA1C1""\n\t"::);

asm volatile(".word 0x0003, 0xA2C2""\n\t"::);

asm volatile(".word 0x0003, 0xA3C3""\n\t"::);

asm volatile(".word 0x0003, 0xA4C4""\n\t"::);

asm volatile(".word 0x0003, 0xA5C5""\n\t"::);

asm volatile(".word 0x0003, 0xA6C6""\n\t"::);

asm volatile(".word 0x0003, 0xA7C7""\n\t"::);

asm volatile(".word 0x0003, 0xA8C8""\n\t"::);

asm volatile(".word 0x0003, 0xA9C9""\n\t"::);

asm volatile(".word 0x0003, 0xAACA""\n\t"::);

asm volatile(".word 0x0003, 0xABCB""\n\t"::);

//ROUND 2

mix_sub_columns ((uint8_t*)s2, (uint8_t*)s1);

//Copy s2 into s1

asm volatile("ldi r30, 0x01""\n\t":::"r30");

asm volatile(".word 0x0002, 0x9C6C""\n\t"::);

94

asm volatile(".word 0x0002, 0x9D6D""\n\t"::);

asm volatile(".word 0x0002, 0x9E6E""\n\t"::);

asm volatile(".word 0x0002, 0x9F6F""\n\t"::);

asm volatile(".word 0x0002, 0xA070""\n\t"::);

asm volatile(".word 0x0002, 0xA171""\n\t"::);

asm volatile(".word 0x0002, 0xA272""\n\t"::);

asm volatile(".word 0x0002, 0xA373""\n\t"::);

asm volatile(".word 0x0002, 0xA474""\n\t"::);

asm volatile(".word 0x0002, 0xA575""\n\t"::);

asm volatile(".word 0x0002, 0xA676""\n\t"::);

asm volatile(".word 0x0002, 0xA777""\n\t"::);

asm volatile(".word 0x0002, 0xA878""\n\t"::);

asm volatile(".word 0x0002, 0xA979""\n\t"::);

asm volatile(".word 0x0002, 0xAA7A""\n\t"::);

asm volatile(".word 0x0002, 0xAB7B""\n\t"::);

//s1 ^= key_sched from 0x0cc

asm volatile("ldi r30, 0x00""\n\t":::"r30");

asm volatile(".word 0x0003, 0x9CCC""\n\t"::);

asm volatile(".word 0x0003, 0x9DCD""\n\t"::);

asm volatile(".word 0x0003, 0x9ECE""\n\t"::);

asm volatile(".word 0x0003, 0x9FCF""\n\t"::);

asm volatile(".word 0x0003, 0xA0D0""\n\t"::);

asm volatile(".word 0x0003, 0xA1D1""\n\t"::);

asm volatile(".word 0x0003, 0xA2D2""\n\t"::);

asm volatile(".word 0x0003, 0xA3D3""\n\t"::);

asm volatile(".word 0x0003, 0xA4D4""\n\t"::);

asm volatile(".word 0x0003, 0xA5D5""\n\t"::);

asm volatile(".word 0x0003, 0xA6D6""\n\t"::);

asm volatile(".word 0x0003, 0xA7D7""\n\t"::);

95

asm volatile(".word 0x0003, 0xA8D8""\n\t"::);

asm volatile(".word 0x0003, 0xA9D9""\n\t"::);

asm volatile(".word 0x0003, 0xAADA""\n\t"::);

asm volatile(".word 0x0003, 0xABDB""\n\t"::);

//ROUND 3

mix_sub_columns ((uint8_t*)s2, (uint8_t*)s1);

//Copy s2 into s1

asm volatile("ldi r30, 0x01""\n\t":::"r30");

asm volatile(".word 0x0002, 0x9C6C""\n\t"::);

asm volatile(".word 0x0002, 0x9D6D""\n\t"::);

asm volatile(".word 0x0002, 0x9E6E""\n\t"::);

asm volatile(".word 0x0002, 0x9F6F""\n\t"::);

asm volatile(".word 0x0002, 0xA070""\n\t"::);

asm volatile(".word 0x0002, 0xA171""\n\t"::);

asm volatile(".word 0x0002, 0xA272""\n\t"::);

asm volatile(".word 0x0002, 0xA373""\n\t"::);

asm volatile(".word 0x0002, 0xA474""\n\t"::);

asm volatile(".word 0x0002, 0xA575""\n\t"::);

asm volatile(".word 0x0002, 0xA676""\n\t"::);

asm volatile(".word 0x0002, 0xA777""\n\t"::);

asm volatile(".word 0x0002, 0xA878""\n\t"::);

asm volatile(".word 0x0002, 0xA979""\n\t"::);

asm volatile(".word 0x0002, 0xAA7A""\n\t"::);

asm volatile(".word 0x0002, 0xAB7B""\n\t"::);

//s1 ^= key_sched from 0x0dc

asm volatile("ldi r30, 0x00""\n\t":::"r30");

asm volatile(".word 0x0003, 0x9CDC""\n\t"::);

96

asm volatile(".word 0x0003, 0x9DDD""\n\t"::);

asm volatile(".word 0x0003, 0x9EDE""\n\t"::);

asm volatile(".word 0x0003, 0x9FDF""\n\t"::);

asm volatile(".word 0x0003, 0xA0E0""\n\t"::);

asm volatile(".word 0x0003, 0xA1E1""\n\t"::);

asm volatile(".word 0x0003, 0xA2E2""\n\t"::);

asm volatile(".word 0x0003, 0xA3E3""\n\t"::);

asm volatile(".word 0x0003, 0xA4E4""\n\t"::);

asm volatile(".word 0x0003, 0xA5E5""\n\t"::);

asm volatile(".word 0x0003, 0xA6E6""\n\t"::);

asm volatile(".word 0x0003, 0xA7E7""\n\t"::);

asm volatile(".word 0x0003, 0xA8E8""\n\t"::);

asm volatile(".word 0x0003, 0xA9E9""\n\t"::);

asm volatile(".word 0x0003, 0xAAEA""\n\t"::);

asm volatile(".word 0x0003, 0xABEB""\n\t"::);

//ROUND 4

mix_sub_columns ((uint8_t*)s2, (uint8_t*)s1);

//Copy s2 into s1

asm volatile("ldi r30, 0x01""\n\t":::"r30");

asm volatile(".word 0x0002, 0x9C6C""\n\t"::);

asm volatile(".word 0x0002, 0x9D6D""\n\t"::);

asm volatile(".word 0x0002, 0x9E6E""\n\t"::);

asm volatile(".word 0x0002, 0x9F6F""\n\t"::);

asm volatile(".word 0x0002, 0xA070""\n\t"::);

asm volatile(".word 0x0002, 0xA171""\n\t"::);

asm volatile(".word 0x0002, 0xA272""\n\t"::);

asm volatile(".word 0x0002, 0xA373""\n\t"::);

97

asm volatile(".word 0x0002, 0xA474""\n\t"::);

asm volatile(".word 0x0002, 0xA575""\n\t"::);

asm volatile(".word 0x0002, 0xA676""\n\t"::);

asm volatile(".word 0x0002, 0xA777""\n\t"::);

asm volatile(".word 0x0002, 0xA878""\n\t"::);

asm volatile(".word 0x0002, 0xA979""\n\t"::);

asm volatile(".word 0x0002, 0xAA7A""\n\t"::);

asm volatile(".word 0x0002, 0xAB7B""\n\t"::);

//s1 ^= key_sched from 0x0ec

asm volatile("ldi r30, 0x00""\n\t":::"r30");

asm volatile(".word 0x0003, 0x9CEC""\n\t"::);

asm volatile(".word 0x0003, 0x9DED""\n\t"::);

asm volatile(".word 0x0003, 0x9EEE""\n\t"::);//fine

asm volatile(".word 0x0003, 0x9FEF""\n\t"::);//fine

asm volatile(".word 0x0003, 0xA0F0""\n\t"::);//fine

asm volatile(".word 0x0003, 0xA1F1""\n\t"::);//fine

asm volatile(".word 0x0003, 0xA2F2""\n\t"::);//fine

asm volatile(".word 0x0003, 0xA3F3""\n\t"::);//fine

asm volatile(".word 0x0003, 0xA4F4""\n\t"::);//bad

asm volatile(".word 0x0003, 0xA5F5""\n\t"::);//bad

asm volatile(".word 0x0003, 0xA6F6""\n\t"::);

asm volatile(".word 0x0003, 0xA7F7""\n\t"::);

asm volatile(".word 0x0003, 0xA8F8""\n\t"::);

asm volatile(".word 0x0003, 0xA9F9""\n\t"::);

asm volatile(".word 0x0003, 0xAAFA""\n\t"::);

asm volatile(".word 0x0003, 0xABFB""\n\t"::);

//ROUND 5

98

mix_sub_columns ((uint8_t*)s2, (uint8_t*)s1);

//Copy s2 into s1

asm volatile("ldi r30, 0x01""\n\t":::"r30");

asm volatile(".word 0x0002, 0x9C6C""\n\t"::);

asm volatile(".word 0x0002, 0x9D6D""\n\t"::);

asm volatile(".word 0x0002, 0x9E6E""\n\t"::);

asm volatile(".word 0x0002, 0x9F6F""\n\t"::);

asm volatile(".word 0x0002, 0xA070""\n\t"::);

asm volatile(".word 0x0002, 0xA171""\n\t"::);

asm volatile(".word 0x0002, 0xA272""\n\t"::);

asm volatile(".word 0x0002, 0xA373""\n\t"::);

asm volatile(".word 0x0002, 0xA474""\n\t"::);

asm volatile(".word 0x0002, 0xA575""\n\t"::);

asm volatile(".word 0x0002, 0xA676""\n\t"::);

asm volatile(".word 0x0002, 0xA777""\n\t"::);

asm volatile(".word 0x0002, 0xA878""\n\t"::);

asm volatile(".word 0x0002, 0xA979""\n\t"::);

asm volatile(".word 0x0002, 0xAA7A""\n\t"::);

asm volatile(".word 0x0002, 0xAB7B""\n\t"::);

//s1 ^= key_sched from 0x0fc

asm volatile("ldi r30, 0x00""\n\t":::"r30");

asm volatile(".word 0x0003, 0x9CFC""\n\t"::);

asm volatile(".word 0x0003, 0x9DFD""\n\t"::);

asm volatile(".word 0x0003, 0x9EFE""\n\t"::);

asm volatile(".word 0x0003, 0x9FFF""\n\t"::);

asm volatile("ldi r30, 0x01""\n\t":::"r30");

asm volatile(".word 0x0003, 0xA000""\n\t"::);

asm volatile(".word 0x0003, 0xA101""\n\t"::);

asm volatile(".word 0x0003, 0xA202""\n\t"::);

99

asm volatile(".word 0x0003, 0xA303""\n\t"::);

asm volatile(".word 0x0003, 0xA404""\n\t"::);

asm volatile(".word 0x0003, 0xA505""\n\t"::);

asm volatile(".word 0x0003, 0xA606""\n\t"::);

asm volatile(".word 0x0003, 0xA707""\n\t"::);

asm volatile(".word 0x0003, 0xA808""\n\t"::);

asm volatile(".word 0x0003, 0xA909""\n\t"::);

asm volatile(".word 0x0003, 0xAA0A""\n\t"::);

asm volatile(".word 0x0003, 0xAB0B""\n\t"::);

//ROUND 6

mix_sub_columns ((uint8_t*)s2, (uint8_t*)s1);

//Copy s2 into s1

asm volatile("ldi r30, 0x01""\n\t":::"r30");

asm volatile(".word 0x0002, 0x9C6C""\n\t"::);

asm volatile(".word 0x0002, 0x9D6D""\n\t"::);

asm volatile(".word 0x0002, 0x9E6E""\n\t"::);

asm volatile(".word 0x0002, 0x9F6F""\n\t"::);

asm volatile(".word 0x0002, 0xA070""\n\t"::);

asm volatile(".word 0x0002, 0xA171""\n\t"::);

asm volatile(".word 0x0002, 0xA272""\n\t"::);

asm volatile(".word 0x0002, 0xA373""\n\t"::);

asm volatile(".word 0x0002, 0xA474""\n\t"::);

asm volatile(".word 0x0002, 0xA575""\n\t"::);

asm volatile(".word 0x0002, 0xA676""\n\t"::);

asm volatile(".word 0x0002, 0xA777""\n\t"::);

asm volatile(".word 0x0002, 0xA878""\n\t"::);

asm volatile(".word 0x0002, 0xA979""\n\t"::);

asm volatile(".word 0x0002, 0xAA7A""\n\t"::);

100

asm volatile(".word 0x0002, 0xAB7B""\n\t"::);

//s1 ^= key_sched from 0x10c

//asm volatile("ldi r30, 0x01""\n\t":::"r30");

asm volatile(".word 0x0003, 0x9C0C""\n\t"::);

asm volatile(".word 0x0003, 0x9D0D""\n\t"::);

asm volatile(".word 0x0003, 0x9E0E""\n\t"::);

asm volatile(".word 0x0003, 0x9F0F""\n\t"::);

asm volatile(".word 0x0003, 0xA010""\n\t"::);

asm volatile(".word 0x0003, 0xA111""\n\t"::);

asm volatile(".word 0x0003, 0xA212""\n\t"::);

asm volatile(".word 0x0003, 0xA313""\n\t"::);

asm volatile(".word 0x0003, 0xA414""\n\t"::);

asm volatile(".word 0x0003, 0xA515""\n\t"::);

asm volatile(".word 0x0003, 0xA616""\n\t"::);

asm volatile(".word 0x0003, 0xA717""\n\t"::);

asm volatile(".word 0x0003, 0xA818""\n\t"::);

asm volatile(".word 0x0003, 0xA919""\n\t"::);

asm volatile(".word 0x0003, 0xAA1A""\n\t"::);

asm volatile(".word 0x0003, 0xAB1B""\n\t"::);

//ROUND 7

mix_sub_columns ((uint8_t*)s2, (uint8_t*)s1);

//Copy s2 into s1

asm volatile("ldi r30, 0x01""\n\t":::"r30");

asm volatile(".word 0x0002, 0x9C6C""\n\t"::);

asm volatile(".word 0x0002, 0x9D6D""\n\t"::);

asm volatile(".word 0x0002, 0x9E6E""\n\t"::);

asm volatile(".word 0x0002, 0x9F6F""\n\t"::);

101

asm volatile(".word 0x0002, 0xA070""\n\t"::);

asm volatile(".word 0x0002, 0xA171""\n\t"::);

asm volatile(".word 0x0002, 0xA272""\n\t"::);

asm volatile(".word 0x0002, 0xA373""\n\t"::);

asm volatile(".word 0x0002, 0xA474""\n\t"::);

asm volatile(".word 0x0002, 0xA575""\n\t"::);

asm volatile(".word 0x0002, 0xA676""\n\t"::);

asm volatile(".word 0x0002, 0xA777""\n\t"::);

asm volatile(".word 0x0002, 0xA878""\n\t"::);

asm volatile(".word 0x0002, 0xA979""\n\t"::);

asm volatile(".word 0x0002, 0xAA7A""\n\t"::);

asm volatile(".word 0x0002, 0xAB7B""\n\t"::);

//s1 ^= key_sched from 0x11c

//asm volatile("ldi r30, 0x01""\n\t":::"r30");

asm volatile(".word 0x0003, 0x9C1C""\n\t"::);

asm volatile(".word 0x0003, 0x9D1D""\n\t"::);

asm volatile(".word 0x0003, 0x9E1E""\n\t"::);

asm volatile(".word 0x0003, 0x9F1F""\n\t"::);

asm volatile(".word 0x0003, 0xA020""\n\t"::);

asm volatile(".word 0x0003, 0xA121""\n\t"::);

asm volatile(".word 0x0003, 0xA222""\n\t"::);

asm volatile(".word 0x0003, 0xA323""\n\t"::);

asm volatile(".word 0x0003, 0xA424""\n\t"::);

asm volatile(".word 0x0003, 0xA525""\n\t"::);

asm volatile(".word 0x0003, 0xA626""\n\t"::);

asm volatile(".word 0x0003, 0xA727""\n\t"::);

asm volatile(".word 0x0003, 0xA828""\n\t"::);

asm volatile(".word 0x0003, 0xA929""\n\t"::);

asm volatile(".word 0x0003, 0xAA2A""\n\t"::);

102

asm volatile(".word 0x0003, 0xAB2B""\n\t"::);

//ROUND 8

mix_sub_columns ((uint8_t*)s2, (uint8_t*)s1);

//Copy s2 into s1

asm volatile("ldi r30, 0x01""\n\t":::"r30");

asm volatile(".word 0x0002, 0x9C6C""\n\t"::);

asm volatile(".word 0x0002, 0x9D6D""\n\t"::);

asm volatile(".word 0x0002, 0x9E6E""\n\t"::);

asm volatile(".word 0x0002, 0x9F6F""\n\t"::);

asm volatile(".word 0x0002, 0xA070""\n\t"::);

asm volatile(".word 0x0002, 0xA171""\n\t"::);

asm volatile(".word 0x0002, 0xA272""\n\t"::);

asm volatile(".word 0x0002, 0xA373""\n\t"::);

asm volatile(".word 0x0002, 0xA474""\n\t"::);

asm volatile(".word 0x0002, 0xA575""\n\t"::);

asm volatile(".word 0x0002, 0xA676""\n\t"::);

asm volatile(".word 0x0002, 0xA777""\n\t"::);

asm volatile(".word 0x0002, 0xA878""\n\t"::);

asm volatile(".word 0x0002, 0xA979""\n\t"::);

asm volatile(".word 0x0002, 0xAA7A""\n\t"::);

asm volatile(".word 0x0002, 0xAB7B""\n\t"::);

//s1 ^= key_sched from 0x12c

//asm volatile("ldi r30, 0x01""\n\t":::"r30");

asm volatile(".word 0x0003, 0x9C2C""\n\t"::);

asm volatile(".word 0x0003, 0x9D2D""\n\t"::);

asm volatile(".word 0x0003, 0x9E2E""\n\t"::);

asm volatile(".word 0x0003, 0x9F2F""\n\t"::);

asm volatile(".word 0x0003, 0xA030""\n\t"::);

103

asm volatile(".word 0x0003, 0xA131""\n\t"::);

asm volatile(".word 0x0003, 0xA232""\n\t"::);

asm volatile(".word 0x0003, 0xA333""\n\t"::);

asm volatile(".word 0x0003, 0xA434""\n\t"::);

asm volatile(".word 0x0003, 0xA535""\n\t"::);

asm volatile(".word 0x0003, 0xA636""\n\t"::);

asm volatile(".word 0x0003, 0xA737""\n\t"::);

asm volatile(".word 0x0003, 0xA838""\n\t"::);

asm volatile(".word 0x0003, 0xA939""\n\t"::);

asm volatile(".word 0x0003, 0xAA3A""\n\t"::);

asm volatile(".word 0x0003, 0xAB3B""\n\t"::);

//ROUND 9

mix_sub_columns ((uint8_t*)s2, (uint8_t*)s1);

//Copy s2 into s1

asm volatile("ldi r30, 0x01""\n\t":::"r30");

asm volatile(".word 0x0002, 0x9C6C""\n\t"::);

asm volatile(".word 0x0002, 0x9D6D""\n\t"::);

asm volatile(".word 0x0002, 0x9E6E""\n\t"::);

asm volatile(".word 0x0002, 0x9F6F""\n\t"::);

asm volatile(".word 0x0002, 0xA070""\n\t"::);

asm volatile(".word 0x0002, 0xA171""\n\t"::);

asm volatile(".word 0x0002, 0xA272""\n\t"::);

asm volatile(".word 0x0002, 0xA373""\n\t"::);

asm volatile(".word 0x0002, 0xA474""\n\t"::);

asm volatile(".word 0x0002, 0xA575""\n\t"::);

asm volatile(".word 0x0002, 0xA676""\n\t"::);

asm volatile(".word 0x0002, 0xA777""\n\t"::);

104

asm volatile(".word 0x0002, 0xA878""\n\t"::);

asm volatile(".word 0x0002, 0xA979""\n\t"::);

asm volatile(".word 0x0002, 0xAA7A""\n\t"::);

asm volatile(".word 0x0002, 0xAB7B""\n\t"::);

//s1 ^= key_sched from 0x13c

//asm volatile("ldi r30, 0x01""\n\t":::"r30");

asm volatile(".word 0x0003, 0x9C3C""\n\t"::);

asm volatile(".word 0x0003, 0x9D3D""\n\t"::);

asm volatile(".word 0x0003, 0x9E3E""\n\t"::);

asm volatile(".word 0x0003, 0x9F3F""\n\t"::);

asm volatile(".word 0x0003, 0xA040""\n\t"::);

asm volatile(".word 0x0003, 0xA141""\n\t"::);//

asm volatile(".word 0x0003, 0xA242""\n\t"::);

asm volatile(".word 0x0003, 0xA343""\n\t"::);

asm volatile(".word 0x0003, 0xA444""\n\t"::);

asm volatile(".word 0x0003, 0xA545""\n\t"::);

asm volatile(".word 0x0003, 0xA646""\n\t"::);

asm volatile(".word 0x0003, 0xA747""\n\t"::);

asm volatile(".word 0x0003, 0xA848""\n\t"::);

asm volatile(".word 0x0003, 0xA949""\n\t"::);

asm volatile(".word 0x0003, 0xAA4A""\n\t"::);

asm volatile(".word 0x0003, 0xAB4B""\n\t"::);

shift_sub_rows ((uint8_t*)s1) ;

//copy_and_key ((uint8_t*)cipher, (uint8_t*)s1, (uint8_t*) (key_sched +

↪→ 10 * N_BLOCK)) ;

105

//Copy s1 (0x9c) into cipher (0x15c)

asm volatile("ldi r30, 0x00""\n\t":::"r30");

asm volatile(".word 0x0012, 0x5C9C""\n\t"::);

asm volatile(".word 0x0012, 0x5D9D""\n\t"::);

asm volatile(".word 0x0012, 0x5E9E""\n\t"::);

asm volatile(".word 0x0012, 0x5F9F""\n\t"::);

asm volatile(".word 0x0012, 0x60A0""\n\t"::);

asm volatile(".word 0x0012, 0x61A1""\n\t"::);

asm volatile(".word 0x0012, 0x62A2""\n\t"::);

asm volatile(".word 0x0012, 0x63A3""\n\t"::);

asm volatile(".word 0x0012, 0x64A4""\n\t"::);

asm volatile(".word 0x0012, 0x65A5""\n\t"::);

asm volatile(".word 0x0012, 0x66A6""\n\t"::);

asm volatile(".word 0x0012, 0x67A7""\n\t"::);

asm volatile(".word 0x0012, 0x68A8""\n\t"::);

asm volatile(".word 0x0012, 0x69A9""\n\t"::);

asm volatile(".word 0x0012, 0x6AAA""\n\t"::);

asm volatile(".word 0x0012, 0x6BAB""\n\t"::);

//Cipher ^= key_sched from 0x14c

asm volatile("ldi r30, 0x01""\n\t":::"r30");

asm volatile(".word 0x0013, 0x5C4C""\n\t"::);

asm volatile(".word 0x0013, 0x5D4D""\n\t"::);

asm volatile(".word 0x0013, 0x5E4E""\n\t"::);

asm volatile(".word 0x0013, 0x5F4F""\n\t"::);

asm volatile(".word 0x0013, 0x6050""\n\t"::);

asm volatile(".word 0x0013, 0x6151""\n\t"::);

asm volatile(".word 0x0013, 0x6252""\n\t"::);

asm volatile(".word 0x0013, 0x6353""\n\t"::);

asm volatile(".word 0x0013, 0x6454""\n\t"::);

106

asm volatile(".word 0x0013, 0x6555""\n\t"::);

asm volatile(".word 0x0013, 0x6656""\n\t"::);

asm volatile(".word 0x0013, 0x6757""\n\t"::);

asm volatile(".word 0x0013, 0x6858""\n\t"::);

asm volatile(".word 0x0013, 0x6959""\n\t"::);

asm volatile(".word 0x0013, 0x6A5A""\n\t"::);

asm volatile(".word 0x0013, 0x6B5B""\n\t"::);

return SUCCESS;

}

else

return FAILURE;

}

// Copy n bytes from location source to location destination

void copy_n_bytes (uint8_t * d, uint8_t * s, uint8_t nn)

{

while (nn >= 4)

{

*d++ = *s++ ; // some unrolling

*d++ = *s++ ;

*d++ = *s++ ;

*d++ = *s++ ;

nn -= 4 ;

}

while (nn--)

*d++ = *s++ ;

}

107

// Copy 16 bytes from location source to location destination

// and xor source with key

void copy_and_key (uint8_t * d, uint8_t * s, uint8_t * k)

{

for (uint8_t i = 0 ; i < N_BLOCK ; i++)

{

*d++ = *s++ ^ *k++ ; // some unrolling

}

}

// Shift rows stage of AES

void shift_sub_rows (uint8_t st [N_BLOCK])

{

st [0] = s_box (st [0]) ; st [4] = s_box (st [4]) ;

st [8] = s_box (st [8]) ; st [12] = s_box (st [12]) ;

uint8_t tt = st [1] ;

st [1] = s_box (st [5]) ; st [5] = s_box (st [9]) ;

st [9] = s_box (st [13]) ; st [13] = s_box (tt) ;

tt = st[2] ; st [2] = s_box (st [10]) ; st [10] = s_box (tt) ;

tt = st[6] ; st [6] = s_box (st [14]) ; st [14] = s_box (tt) ;

tt = st[15] ;

st [15] = s_box (st [11]) ; st [11] = s_box (st [7]) ;

st [7] = s_box (st [3]) ; st [3] = s_box (tt) ;

}

108

// XOR two 16 byte blocks

void xor_block (uint8_t * d, uint8_t * s)

{

for (uint8_t i = 0 ; i < N_BLOCK ; i++)

{

*d++ ^= *s++ ;

}

}

A.3 AES.h

This section includes the header file for AES source code.

#ifndef AES_H

#define AES_H

#define N_ROW 4

#define N_COL 4

#define N_BLOCK (N_ROW * N_COL)

#define KEYLEN 16 //key is 16 bytes long

#define ROUND 10 //128 bit encryption uses 10 rounds

#define HI ((ROUND + 1) << 4)//I think evaluates to 176?

#define KEY_SCHED_BYTES ((ROUND + 1) * N_BLOCK)

#define SUCCESS (0)

#define FAILURE (-1)

#define WPOLY 0x011B

#define f2(x) ((x) & 0x80 ? (x << 1) ^ WPOLY : x << 1);

uint8_t s_box(uint8_t);

uint8_t set_key(uint8_t [], uint8_t []);

109

void set_IV(uint8_t *iv, uint64_t ivc);

void get_IV(uint8_t *iv, uint64_t ivc);

void IV_inc(uint8_t *iv, uint64_t ivc);

uint8_t cbc_encrypt(uint8_t * plain, uint8_t * cipher, int n_block, uint8_t iv

↪→ [N_BLOCK], uint8_t* key_sched);

uint8_t encrypt(uint8_t plain [N_BLOCK], uint8_t cipher [N_BLOCK], uint8_t

↪→ key_sched[KEY_SCHED_BYTES], int round);

void copy_n_bytes(uint8_t * d, uint8_t * s, uint8_t nn);

void copy_and_key(uint8_t * d, uint8_t * s, uint8_t * k);

void mix_sub_columns(uint8_t dt[N_BLOCK], uint8_t st[N_BLOCK]);

void shift_sub_rows(uint8_t st [N_BLOCK]);

void xor_block(uint8_t * d, uint8_t * s);

#endif

A.4 softcore_util.c

This section includes utility functions used in AES code for interacting with the soft core.

#include "softcore_util.h"

#if ROM

// Program memory initialized variable

const unsigned char ROM_file[FILE_SIZE] PROGMEM =

{

0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7,

↪→ 0xab, 0x76,

0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4,

↪→ 0x72, 0xc0,

0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8,

↪→ 0x31, 0x15,

110

0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27,

↪→ 0xb2, 0x75,

0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3,

↪→ 0x2f, 0x84,

0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c,

↪→ 0x58, 0xcf,

0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,

↪→ 0x9f, 0xa8,

0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff,

↪→ 0xf3, 0xd2,

0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d,

↪→ 0x19, 0x73,

0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e,

↪→ 0x0b, 0xdb,

0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95,

↪→ 0xe4, 0x79,

0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a,

↪→ 0xae, 0x08,

0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd,

↪→ 0x8b, 0x8a,

0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1,

↪→ 0x1d, 0x9e,

0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55,

↪→ 0x28, 0xdf,

0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54,

↪→ 0xbb, 0x16

};

// End program memory initialized variable

// Copy the program memory to SRAM

111

unsigned char RAM_file[FILE_SIZE];

#endif

unsigned char * volatile word_to_send;// volatile ptr to nonvolatile mem

// Functions for initializing RAM from ROM

void ROM_fill(void)

{

memcpy_P(RAM_file, ROM_file, FILE_SIZE);

USART_Init(MYUBRR);

return;

}

// Functions for dumping RAM over UART

// UART data register empty interrupt service routine

ISR(UART_UDRE_vect) {

if((int) word_to_send <= 4096)

{

USART_Transmit(*(word_to_send++)); // Transmit a word, increment pointer

//Transmit_Address(word_to_send);

PORTC |= 0x0F;

}

else

PORTC = 0x01;

112

}

extern void Interrupt_Loop(uint8_t my_var)

{

word_to_send = (unsigned char *) my_var;

sei(); // Enable global interrupts

while(1)

{

if(PINE) // Any of first 8 switches enabled, reset

{

cli(); // Disable interrupts

word_to_send = (unsigned char *) my_var; // Reset pointer to first mem

↪→ location

//Transmit_Address(word_to_send);

PORTC = 0x00; // Light LEDs, tell me where I am looping

}

else // Make sure interrupt is on

{

sei();

}

}

}

void USART_Init(unsigned int ubrr)

{

/* Set baud rate */

UBRR = (unsigned char)ubrr;

/* Enable receiver and transmitter and data register empty interrupt */

UCR = (1<<RXEN)|(1<<TXEN) | (1<<UDRIE); //ATmega103 defaults 1 start, 1 stop,

↪→ 8 data

113

DDRA = 0xFF; // Initialize Port A as output (used for cycle counting)

PORTA = 0x00;// Reset when A(1) is low

PORTA = 0x02;// Toggle reset of cycle counter

DDRC = 0xFF; // Port C (LEDs) output

DDRE = 0x00; // Initialize Port E (switches) as input

}

void USART_Transmit(unsigned char data)

{

/* Wait for empty transmit buffer */

while (!(USR & (1<<UDRE)));

/* Put data into buffer, sends the data */

UDR = data;

}

void Transmit_Address(unsigned char *pointer)

{

// ASCII representation of address I’m printing next

char address[4];

// Integer to ASCII, tell me pointer mem location

itoa((int) pointer, address, 10);

for(int i = 0; i < 4; i++) // Transmit address location string, CRLF

{

USART_Transmit(address[i]);

}

USART_Transmit(’\r’);

USART_Transmit(’\n’);

}

114

A.5 softcore_util.h

This section includes the header file for utility functions.

#ifndef SOFTCORE_UTIL_H

#define SOFTCORE_UTIL_H

#define ROM 1

#define FILE_SIZE 0x100

#define OFFSET 0x003E // Start of pixel data in bmp file

#define BAUD 9600

#define FOSCFIRST 16000000

#if !defined(FOSC)

#define FOSC 16000000 //Clock Speed

#endif

#define MYUBRR (FOSC/16/BAUD-1)

#if !defined(F_CPU)

#define F_CPU 16000000UL //Clock Speed for delay.h

#endif

/* Data Direction Register, Port C */

#define DDRC _SFR_IO8(0x14)

/* Data Direction Register, Port F */

#define DDRF _SFR_IO8(0x08)

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/pgmspace.h>

#include <stdlib.h>

115

// Moves ROM file to RAM automagically by placing ROM_fill function

// in .init8 section of program memory before main is called

#if ROM

void ROM_fill(void) \

__attribute__((naked)) \

__attribute__((used)) \

__attribute__((section(".init8")));

#else

void ROM_fill(void);

#endif

// RAM dump over UART

void USART_Init(unsigned int ubrr);

void USART_Transmit(unsigned char data);

void Transmit_Address(unsigned char *pointer);

extern inline void Interrupt_Loop(uint8_t) \

__attribute__((always_inline));

#endif

References

[1] C. Carvalho, “The gap between processor and memory speeds,” in IEEE International
Conference on Control and Automation, Jan. 2002.

[2] D. Efnusheva, A. Cholakoska, and A. Tentov, “A survey of different approaches for
overcoming the processor - memory bottleneck,” International Journal of Computer
Science and Information Technology, vol. 9, pp. 151–163, Apr. 2017.

[3] M. Dasygenis, E. Brockmeyer, B. Durinck, F. Catthoor, D. Soudris, and A. Thanailakis,
“A combined DMA and application-specific prefetching approach for tackling the
memory latency bottleneck,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 14, pp. 279–291, Mar. 2006.

[4] W. A. Wulf and S. A. McKee, “Hitting the memory wall,” ACM SIGARCH Computer
Architecture News, vol. 23, pp. 20–24, Mar. 1995.

[5] K. K. Chang, Understanding and improving the latency of DRAM-based memory
systems. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 2017.

[6] I. Pavlov, “7-zip LZMA benchmark.” Online, 2018. Available at https://www.7-cpu.
com/. Accessed 11/15/2018.

[7] J. Backus, “Can programming be liberated from the von Neumann style?: A functional
style and its algebra of programs,” Communications of the ACM, vol. 21, pp. 613–641,
Aug. 1978.

[8] J. Edwards and S. O'Keefe, “Eager recirculating memory to alleviate the von Neumann
bottleneck,” in 2016 IEEE Symposium Series on Computational Intelligence (SSCI),
IEEE, Dec. 2016.

[9] C.-H. Lu, C.-S. Lin, H.-L. Chao, J.-S. Shen, and P.-A. Hsiung, “Reconfigurable multi-
core architecture – A plausible solution to the von Neumann performance bottleneck,”
in 2013 IEEE 7th International Symposium on Embedded Multicore Socs, IEEE, Sept.
2013.

[10] D. Elliott, W. Snelgrove, and M. Stumm, “Computational RAM: A memory-simd hybrid
and its application to DSP,” in Proceedings of the IEEE Custom Integrated Circuits
Conference, IEEE, 1992.

[11] L. Koskinen, J. Tissari, J. Teittinen, E. Lehtonen, M. Laiho, and J. H. Poikonen,
“A performance case-study on memristive computing-in-memory versus von Neumann
architecture,” in 2016 Data Compression Conference (DCC), IEEE, Mar. 2016.

116

https://www.7-cpu.com/
https://www.7-cpu.com/

117

[12] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick, “A case for intelligent RAM,” IEEE Micro, vol. 17, no. 2,
pp. 34–44, 1997.

[13] Y. Zha and J. Li, “RRAM-based reconfigurable in-memory computing architecture
with hybrid routing,” in 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), IEEE, Nov. 2017.

[14] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-in-
memory accelerator for parallel graph processing,” in Proceedings of the 42nd Annual
International Symposium on Computer Architecture - ISCA '15, New York: ACM Press,
2015.

[15] S. Srikanth, T. M. Conte, E. P. DeBenedictis, and J. Cook, “The superstrider
architecture: Integrating logic and memory towards non-von Neumann computing,”
in 2017 IEEE International Conference on Rebooting Computing (ICRC), IEEE, Nov.
2017.

[16] B. Yu, M. Alawad, M. Riera, and M. Lin, “Improving memory performance in
reconfigurable computing architecture through hardware-assisted dynamic graph,” in
2013 International Conference on Reconfigurable Computing and FPGAs (ReConFig),
IEEE, Dec. 2013.

[17] X. Wen, F. Bensaali, and R. Sotudeh, “Dynamic co-operative intelligent memory,” in
4th IEEE International Symposium on Electronic Design, Test and Applications (delta
2008), IEEE, Jan. 2008.

[18] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory with spin-
transfer torque magnetic RAM,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, pp. 1–14, 2018.

[19] Y. Zhang, L. Xu, Q. Dong, J. Wang, D. Blaauw, and D. Sylvester, “Recryptor: A
reconfigurable cryptographic Cortex-M0 processor with in-memory and near-memory
computing for IoT security,” IEEE Journal of Solid-State Circuits, vol. 53, pp. 995–
1005, Apr. 2018.

[20] J. Hennessy and D. Patterson, “A new golden age for computer architecture: Domain-
specific hardware/software co-design, enhanced security, open instruction sets, and
agile chip development,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), IEEE, June 2018.

[21] Q. Zhu, B. Akin, H. E. Sumbul, F. Sadi, J. C. Hoe, L. Pileggi, and F. Franchetti, “A 3D-
stacked logic-in-memory accelerator for application-specific data intensive computing,”
in 2013 IEEE International 3D Systems Integration Conference (3DIC), IEEE, Oct.
2013.

118

[22] S. Hamdioui, L. Xie, A. N. H. Anh, M. Taouil, K. Bertels, H. Corporaal, H. Jiao,
F. Catthoor, D. Wouters, L. Eike, and J. van Lunteren, “Memrisor based computation-
in-memory architecture for data-intensive applications,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2015, IEEE Conference Publications, 2015.

[23] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo,” in Proceedings of the 53rd
Annual Design Automation Conference on - DAC '16, ACM Press, 2016.

[24] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME: A novel
processing-in-memory architecture for neural network computation in ReRAM-based
main memory,” ACM SIGARCH Computer Architecture News, vol. 44, pp. 27–39, June
2016.

[25] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: the Terasys massively
parallel PIM array,” Computer, vol. 28, pp. 23–31, Apr. 1995.

[26] K. C. Akyel, H.-P. Charles, J. Mottin, B. Giraud, G. Suraci, S. Thuries, and J.-P. Noel,
“DRC2: Dynamically reconfigurable computing circuit based on memory architecture,”
in 2016 IEEE International Conference on Rebooting Computing (ICRC), IEEE, Oct.
2016.

[27] C. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic, N. Cardwell,
R. Fromm, J. Golbus, B. Gribstad, K. Keeton, R. Thomas, N. Treuhaft, and K. Yelick,
“Scalable processors in the billion-transistor era: IRAM,” Computer, vol. 30, no. 9,
pp. 75–78, 1997.

[28] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick, “Intelligent RAM (IRAM): chips that remember and
compute,” in 1997 IEEE International Solids-State Circuits Conference. Digest of
Technical Papers, IEEE.

[29] H. A. D. Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui, and K. Bertels, “On the
implementation of computation-in-memory parallel adder,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 25, pp. 2206–2219, Aug. 2017.

[30] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective (4th
Edition). Pearson, 2010.

[31] B. Akin, F. Franchetti, and J. C. Hoe, “HAMLeT architecture for parallel data
reorganization in memory,” IEEE Micro, vol. 36, pp. 14–23, Jan. 2016.

[32] D. Patterson, K. Asanovic, A. Brown, R. Fromm, J. Golbus, B. Gribstad, K. Keeton,
C. Kozyrakis, D. Martin, S. Perissakis, R. Thomas, N. Treuhaft, and K. Yelick,
“Intelligent RAM (IRAM): the industrial setting, applications, and architectures,” in

119

Proceedings International Conference on Computer Design VLSI in Computers and
Processors, IEEE Comput. Soc, 1997.

[33] C. Kozyrakis and D. Patterson, “A new direction for computer architecture research,”
Computer, vol. 31, no. 11, pp. 24–32, 1998.

[34] J. Gebis and S. Williams, “VIRAM1: A media oriented vector processor with embedded
DRAM,” in 41st Design Automation Student Design Contest, 2004.

[35] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch, O. Mutlu, P. B. Gibbons,
and T. C. Mowry, “Fast bulk bitwise AND and OR in DRAM,” IEEE Computer
Architecture Letters, vol. 14, pp. 127–131, July 2015.

[36] V. Seshadri, M. A. Kozuch, T. C. Mowry, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,
G. Pekhimenko, Y. Luo, O. Mutlu, and P. B. Gibbons, “RowClone,” in Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture - MICRO-46,
ACM Press, 2013.

[37] P. Jain, G. E. Suh, and S. Devadas, “Embedded intelligent SRAM,” in Proceedings of
the 40th conference on Design automation - DAC '03, NACM Press, 2003.

[38] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based material implication (IMPLY) logic: Design principles and
methodologies,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 22, pp. 2054–2066, oct 2014.

[39] A. W. Topol, D. C. L. Tulipe, L. Shi, D. J. Frank, K. Bernstein, S. E. Steen, A. Kumar,
G. U. Singco, A. M. Young, K. W. Guarini, and M. Ieong, “Three-dimensional integrated
circuits,” IBM Journal of Research and Development, vol. 50, pp. 491–506, July 2006.

[40] B. Akin, J. C. Hoe, and F. Franchetti, “HAMLeT: Hardware accelerated memory
layout transform within 3D-stacked DRAM,” in 2014 IEEE High Performance Extreme
Computing Conference (HPEC), IEEE, Sep 2014.

[41] Atmel Corporation, ATmega103(L) data sheet, Feb. 2007.

[42] Atmel Corporation, AVR instruction set manual, 2016.

[43] R. Lepetenok, “AVR core.” Online., Feb. 2017. Available at https://opencores.org/
project/avrcore.

[44] J. Daemen and V. Rijmen, The Design of Rijndael. Berlin: Springer-Verlag, 2002.

[45] G. Spanos, “AES for microcontrollers.” Online, Oct. 2018. Available at https://github.
com/spaniakos/AES.

https://opencores.org/project/avrcore
https://opencores.org/project/avrcore
https://github.com/spaniakos/AES
https://github.com/spaniakos/AES

	List of Figures
	List of Tables
	Acronyms
	Chapter Introduction
	Problem Statement
	Approach

	Chapter Background Information
	Applications
	Motivations
	Performance Improvements
	Energy Efficiency
	Limitations of Traditional Architectures

	Limitations
	Why Now?

	Chapter Survey of PIM Literature
	DRAM
	Computational RAM
	IRAM
	Bulk Bitwise Operations in DRAM

	SRAM
	DRC2
	Terasys
	Intelligent SRAM
	Recryptor

	Resistive Memories
	PRIME
	Spin-Transfer Torque Magnetic RAM
	Computation-in-Memory Parallel Adder

	Three Dimensional Integration
	Tesseract
	HAMLeT

	Chapter FPGA-based PIM Simulation
	Hardware Architecture
	ATmega103(L) Microcontroller
	PIM Modifications

	Processor in Memory Instructions
	Instruction Format
	Instruction Pipeline
	Typical PIM Operation Usage

	Example Application
	Results
	Software Comparison
	Hardware Comparison

	Chapter Conclusions and Future Work
	Implementation Limitations
	Future Work

	Appendix C Source Code
	AES.c
	PIM_AES.c
	AES.h
	softcore_util.c
	softcore_util.h

	References

